40GbE MTTFPA when using transcoding

Steve Trowbridge, Alcatel-Lucent Osamu Ishida, NTT

IEEE P802.3ba Task Force Orlando, FL March 2008

40GbE MTTFPA when using transcoding

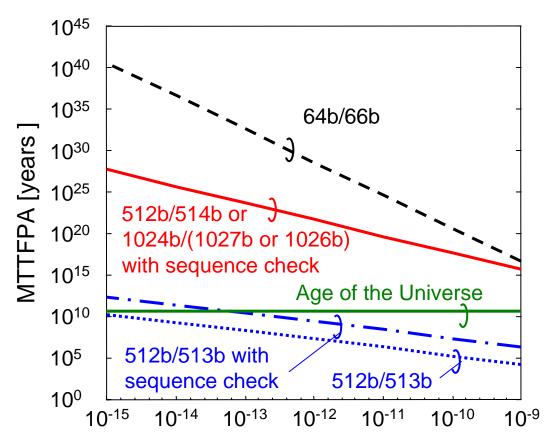
For IEEE802.3ba, Mar. 2008

Purpose of This Presentation

- Potential issue with appropriate support for OTN
 - 512b/513b transcoding could degrade MTTFPA
 - to the order of BER^1 (< lifetime of the universe)
 - far below the order of BER^3 in native 64b/66b
- Proposed improvements for MTTFPA
 - Alternative transcodings increase MTTFPA
 - to the order of BER^2 (> lifetime of the universe)
 - ITU-T experts will meet in June to consider proposals
 - IEEE input welcome
- Identify minimal MTTFPA related OTN support requirements to IEEE802.3ba

Potential "OTN compatibility" Issue

- Native 64b/66b provides excellent MTTFPA
 - of the order of BER^3
 - more than the age of the universe
- While transcoding is normally used into an FEC protected environment of OTN, MTTFPA could be degraded given uncorrected or miscorrected errors in OTN
 - to the order of BER^1 when using 512b/513b
 - less than the age of the universe



Remedy for MTTFPA

- During ITU-T Q11/SG15 February meeting, alternative transcoding proposals appear that improve MTTFPA
 - to the order of BER^2
 - bellow performance of native 64b/66b slightly, but
 - well more than the age of the universe (See next slide)
- Alternative transcoding proposals (See Appendix)
 - 512b/514b (Remedy 1) and 1024b/1027b (Remedy 2)
 - NTT, "40 GbE MTTFPA when using 512B/513B transcoding ", C786, ITU-T Q11/15, Feb 2008, Geneva
 - 1024b/1026b (Remedy 3)
 - Alcatel Lucent, "Mapping of 40 GbE into OTN and MTTFPA", C892, ITU-T Q11/15, Feb 2008, Geneva

Estimated MTTFPA

Bit Error Rate (after the error correction if used)

NTT, "40 GbE MTTFPA when using 512B/513B transcoding ", C786, ITU-T Q11/15, Feb 2008, Geneva

Alcatel · Lucent

ITU-T Will Discuss Pros and Cons in June

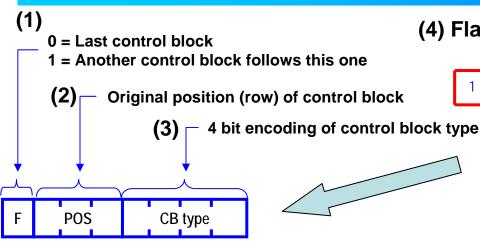
Transcoding	512B/513B	512B/514B	1024B/1027B	1024B/1026B						
Proposal in ITU-T Q11/SG15	Alcatel-Lucent WD12,Q11/15 Oct 2007	<mark>NTT</mark> СОМ 15 – С 786 – Е	NTT СОМ 15 – С 786 – Е	Alcatel-Lucent COM 15 – C 892 – E						
Features										
MTTFPA at link BER of 10^-12	NO 10^7.4 Years	YES 10^22 Years	YES 10^22 Years	YES 10^22 Years						
Self-synchronization	NO	YES	YES	YES						
Coding delay	512 bits	512 bits	1024 bits	1024 bits						
OTN mapping	•									
Bit rate for 40GbE	40.078 Gb/s	40.156 Gb/s	40.117 Gb/s	40.078 Gb/s						
40GbE mapping into OPU3	YES	YES ^{*1}	YES	YES						
Full Ethernet symbol transmission	YES	NO	YES	YES						
Client clock transmission	YES	YES ^{*2}	YES	YES						
Comments		 *1: IDLE shrinkage of 100ppm and using ODU3 NJO (1byte) *2: Constant rate IDLE shrinkage and insertion 								

40GbE MTTFPA when using transcoding

MTTFPA OTN support Requirements

- Permit MTTFPA of the order of BER^2
 - Below performance of native 64b/66b, but
 - still greater than lifetime of universe
- If with 512b/514b (Remedy 1)
 - No extension of 64b/66b control code
 - Operate at lower end of +/- 100ppm clock tolerance range
- If with 1024b/1027b (Remedy 2)
 - No extension of 64b/66b control code
- If with 1024b/1026b (Remedy 3)
 - No extension of 64b/66b control code
 - Only start packets and ordered sets on 8B boundary

Appendix



Alternative Transcoding Details

- 512b/513b and Its MTTFPA Issues
- What happens if a bit error hits?
 - (1) Flag Bit for 512b Payload
 - requires 512b/514b (Remedy 1), or
 - 1024b/1027b (Remedy 2), or
 - 1024b/1026b (Remedy 3)
 - (2) 1-Bit Control-Block Continuation Flag
 - requires Block Sequence Check
 - (3) 3-bit original position of control block
 - (not a problem)
 - (4) 4-bit representation of 66B control block type
 - requires re-mapping the control block type

512b/513b and Its MTTFPA Issues

Control block header byte

"Proposed mapping of 40 Gb Ethernet into standard ODU3", (Alcatel Lucent) wd12, ITU-T Q11/15, Oct 2007, Shenzhen

ock)
(

	<i>(</i>							· ·				
	1aaa TTTT											
÷	1bbb TTTT	7 byte (per format of 64B/66B control block type)										
	Occc TTTT		7 byte (per format of 64B/66B control block type)									
	D0	D1	D2	D3	D4	D5	D6	D7				
	D0	D1	D2	D3	D4	D5	D6	D7				
	D0	D1	D2	D3	D4	D5	D6	D7				
	D0	D1	D2	D3	D4	D5	D6	D7				
	D0	D1	D2	D3	D4	D5	D6	D7				

• What happens if a bit error hits the following bits?

NTT	Alcatel·Lucent 🅢
 4-bit representation of 66B control block type (CB) 	(4)
 3-bit original position of control block (POS) 	(3)
 1-bit continuation flag (F) 	(2)
 A control-block header byte 	
 A flag bit for 512b payload 	(1)

40GbE MTTFPA when using transcoding

(1) Flag Bit for 512b Payload

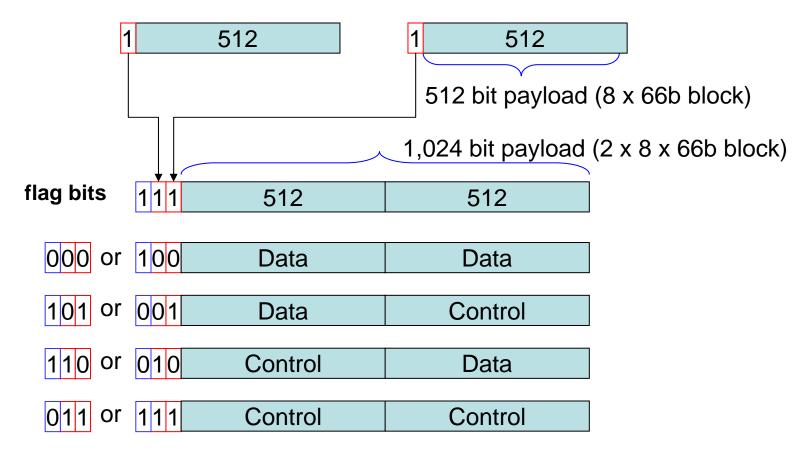
- If a bit error hits this 1-bit header of the 512b block that includes 66B control blocks, all the 66B blocks are misinterpreted as data
- This is sometimes critical, since the minimum inter-frame spacing is far less than 512b, and hence two consecutive MAC frames may be mis-integrated and still pass the CRC check.
- Our recommendations
 - Remedy 1: Add one more bit for the flag; i.e. 512b/514b
 - Like 64b/66b, two-bit header also provides capabilities for block synchronization and bit-error monitoring
 - Remedy 2: Concatenate two 512b/513b blocks and add one more bit for the flag; i.e. 1024b/1027b
 - Allow ODU3 mapping without any IDLE shrinkage
 - Remedy 3: Increase the transcoding compression to 1024b/1025b per malpass_03_0907, then add one more bit for the flag; i.e. 1024b/1026b

🕐 NTT

Remedy 1: 512b/514b

- Nominal rate of 512b/514b is slightly higher than that of OPU3 payload area, but can be accommodated within 100ppm clock tolerance margin of Ethernet
 - by removing some of inter frame idles

40 Gigabit Ethernet	LAN PMD	41.25 Gb/s (4x10.3125 Gb/s)			
Ethemet	Effective rate	40 Gb/s			
512B/514B transcoding	Nominal rate	40.15625 Gb/s			
transcouling	Removal allowance clock tolerance of -100 ppm	40.15223438 Gb/s			
OPU3	Nominal payload rate	40.150519322 Gb/s			
payload area	Maximum payload rate with NJO byte	40.15315525 Gb/s			
	Maximum payload rate under worst case clock tolerance -20 ppm	40.15235219 Gb/s			


40.15235219 Gb/s > 40.15223438 Gb/s

Alcatel·Lucent 🥢

Remedy 2: 1024b/1027b

- Concatenate two 512b/513b blocks and add one more flag bit
 - Provide two-bit Hamming distance between 3-bit flags

🕐 NTT

40GbE MTTFPA when using transcoding

Alcatel · Lucent

Remedy 2: 1024b/1027b on ODU3 ?

• Yes, nominal rate of 1024b/1027b is lower than that of OPU3 payload area!

40 Gigabit Ethernet	LAN PMD	41.25 Gb/s (4x10.3125 Gb/s)		
Ellemel	Effective rate	40 Gb/s		
1024B/1027B transcoding	Nominal rate	40.1171875 Gb/s		
transcoung	Maximum rate under worst case clock tolerance of + 100 ppm	40.12119921875 Gb/s		
OPU3	Nominal payload rate	40.150519322 Gb/s		
payload area	Minimum payload rate under worst case clock tolerance of -20ppm	40.14971631161356 Gb/s		

40.12119921875 Gb/s < 40.14971631161356 Gb/s

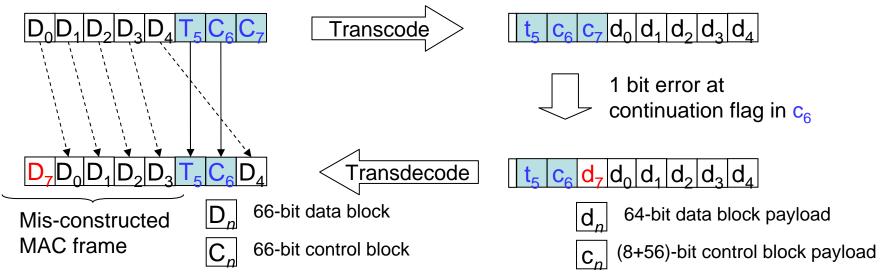
Remedy 3: Additional compression to allow more robust code to fit standard ODU3

- Huawei proposed generalization of 512B/513B to (64*N)B/(64*N+1)B to enable more compact coding (malpass_03_0907.pdf)
- More compact code than 512B/513B not needed just to get 40 GbE to fit standard ODU3, and not generally desirable as larger block sizes for transcoding increase latency
- "One notch" more compact coding to apply MTTFPA improvements and still fit standard ODU3.
 - o Doubling of Flag bit to two bits (01 or 10) improves MTTFPA and provides additional benefit that it is "self framing"
 - o Use 1024B/1026B code (sixteen 66B input blocks per 1026B block), which has same efficiency as 512B/513B
 - o Four bit position indicator (instead of 3) for control block position
 - Use variable length control block type, taking advantage of unused bits in certain control block formats and 66B control block types not needed given 8-byte packet start and ordered set position rules with 2-bit Hamming distance between control block types with packet terminate /T/
- Since 1024B/1026B is the same ratio as 512B/513B, it fits ODU3

Possible control block reductions for 40/100 GbE From MLD proposal

Ordered sets can't start in 5 th lane	Input Data	S y n c	Block I	Payload							
	Bit Position: Data Block Format:	01	2								65
	D ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ D ₆ D ₇	01	D ₀	D ₁	D ₂	D ₃	D	4	D ₅	D ₆	D ₇
	Control Block Formats:		Block Type Field		l	1			1	1	
	C ₀ C ₁ C ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	10	0x1e	C ₀	C ₁	C ₂	C ₃	C_4	C ₅	C ₆	C ₇
\ \ _		10	0v2d	C ₀	C;	C ₂	C ₀	0;	D ₀	D ₀	. D,
		10	0×22	C ₀	C,	C_	C,		D,	P,	D,
X	O ₂ D ₁ D ₂ D ₂ /S ₁ D ₂ D ₂ D ₂	10	0x66	D4		D	0,		De	De	D-
	0- D- D- D-/0- D- D- D-	10	0×55	D,	D	D	0-	0.	De	De	D-
	S ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ D ₆ D ₇	10	0x78	D ₁	D ₂	D ₃	D	4	D ₅	D ₆	D ₇
	O ₀ D ₁ D ₂ D ₃ /C ₄ C ₅ C ₆ C ₇	10	0x4b	D ₁	D ₂	D ₃	O ₀	C ₄	C ₅	C ₆	C ₇
	${\rm T}_0{\rm C}_1{\rm C}_2{\rm C}_3/{\rm C}_4{\rm C}_5{\rm C}_6{\rm C}_7$	10	0x87		C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇
	D ₀ T ₁ C ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	10	0x99	D ₀		C ₂	C ₃	C_4	C ₅	C ₆	C ₇
	$D_0 D_1 T_2 C_3 / C_4 C_5 C_6 C_7$	10	0xaa	D ₀	D ₁		C ₃	C ₄	C ₅	C ₆	C ₇
Packets can't	$D_0 D_1 D_2 T_3 / C_4 C_5 C_6 C_7$	10	0xb4	D ₀	D ₁	D ₂		C ₄	C ₅	C ₆	C ₇
start in 5 th Iane	D ₀ D ₁ D ₂ D ₃ /T ₄ C ₅ C ₆ C ₇	10	Охсс	D ₀	D ₁	D ₂	D	3	C ₅	C ₆	C ₇
	$D_0D_1D_2D_3/D_4T_5C_6C_7$	10	0xd2	D ₀	D ₁	D ₂	D	3	D ₄	C ₆	C ₇
	$D_0 D_1 D_2 D_3 / D_4 D_5 T_6 C_7$	10	0xe1	D ₀	D ₁	D ₂	D	3	D ₄	D ₅	C ₇
	D ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ D ₆ T ₇	10	0xff	D ₀	D ₁	D ₂	D	3	D ₄	D ₅	D ₆

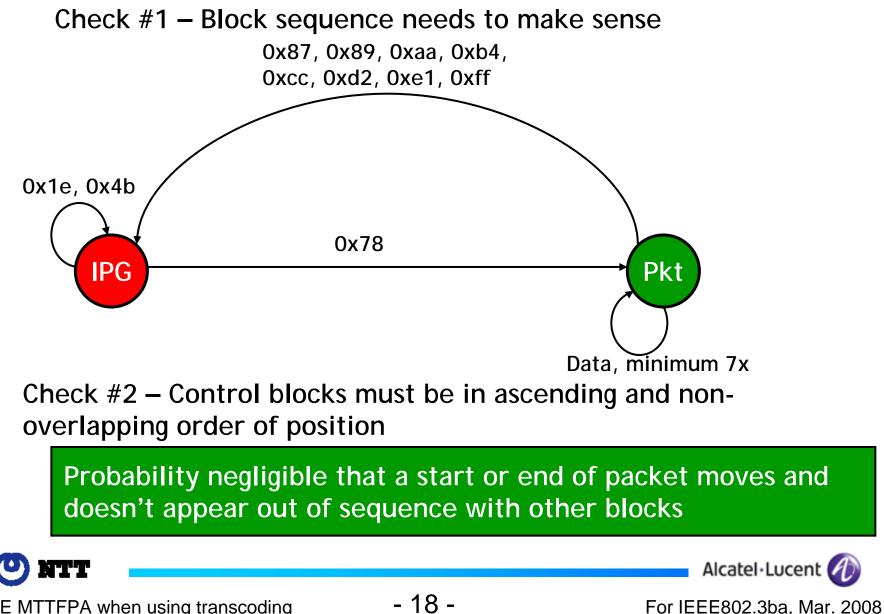
Figure 49–7–64B/66B block formats



40GbE MTTFPA when using transcoding

For IEEE802.3ba, Mar. 2008

(2) 1-Bit Control-Block Continuation Flag


- If a bit error hits this flag, the following 66B control blocks are all misinterpreted as data blocks
- This is critical, since some of 66B control blocks may be misinterpreted as data, and a MAC frame may be mis-constructed and still pass the CRC check.

- Our recommendation
 - Check 66B block sequence at the decoder
 - Replace the 512-bit payload with eight 66B Error Control Blocks if the sequence violation is detected

🙂 NTT

Block Sequence Check

40GbE MTTFPA when using transcoding

(3) 3-bit Original Position of Control Block

- If a bit error hits these bits, the 66B control block is misplaced in the 512-bit payload, yielding misplaced 66B data blocks
- This is not critical, since such wrong 66B block sequence will be detected at 64/ 66 PCS
- Not a Problem

40GbE MTTFPA when using transcoding

Alcatel · Lucent

(4) 4-bit representation of control block type

- If a bit error hits these bits, the 66B control block is misinterpreted
- This is critical, especially if the frame delimiter block T or S is misinterpreted, MAC frame may be stretched or shrunk by several bytes and still pass the CRC check
 - 64B/66B avoids this issue by selecting type codes with Hamming distance of 4
 - 512b/513b can not fully utilize this since we steal 4-bit from this type field, but

Our recommendation

- Re-map the 4-bit control block (CB) type to keep the Hamming distance of 2 among CB-types for T and S
 - Rearrangement of code values for flag bit Solution 1 or 2
 - Take advantage of reduced set of control block types for 40 GbE and 100 GbE for flag bit solution 3 Alcatel · Lucent

Control Block (CB) Type Update Example Flag bit for Remedy 1 or 2

	64b/66b Block		СВ Туре	Cf. original 512b/513b			
#	Control Block Formats	Type Field	свтуре	(Table	1 of [4])		
1	$C_0 C_1 C_2 C_3 / C_4 C_5 C_6 C_7$	0x1e	0001	1	0001		
2	$C_0 C_1 C_2 C_3 / O_4 D_5 D_6 D_7$	0x2d	0010	1	0010		
3	$C_0 C_1 C_2 C_3 / S_4 D_5 D_6 D_7$	0x33	0111	Hamming	0011		
4	$O_0 D_1 D_2 D_3 / S_4 D_5 D_6 D_7$	0x66	1011	distance	0100		
5	O ₀ D ₁ D ₂ D ₃ / O ₄ D ₅ D ₆ D ₇	0x55	1101	greater	0101		
6	$S_0 D_1 D_2 D_3 / D_4 D_5 D_6 D_7$	0x78	1110	f than two	0110		
7	$O_0 D_1 D_2 D_3 / C_4 C_5 C_6 C_7$	0x4b	1000]	0111		
8	$T_0 C_1 C_2 C_3 / C_4 C_5 C_6 C_7$	0x87	0011		1000		
9	$D_0 T_1 C_2 C_3 / C_4 C_5 C_6 C_7$	0x99	0101		1001		
10	$D_0 D_1 T_2 C_3 / C_4 C_5 C_6 C_7$	0xaa	1001	Hamming	1010		
11	$D_0 D_1 D_2 T_3 / C_4 C_5 C_6 C_7$	0xb4	1010	distance	1011		
12	$D_0 D_1 D_2 D_3 / T_4 C_5 C_6 C_7$	Охсс	1100	(greater	1100		
13	$D_0 D_1 D_2 D_3 / D_4 T_5 C_6 C_7$	0xd2	0110	than two	1101		
14	$D_0 D_1 D_2 D_3 / D_4 D_5 T_6 C_7$	0xe1	0000	1	1110		
15	$D_0 D_1 D_2 D_3 / D_4 D_5 D_6 T_7$	Oxff	1111])	1111		

40GbE MTTFPA when using transcoding

2-bit Hamming distance for control block types with additional compression (flag bit for Remedy 3)

- Flag = 01 no 66B control blocks in 1026-bit block
- Flag = 10 One or more 66B control blocks in 1026-bit block
- Flag bits plus sixteen transcoded 66B codewords combined (as below) to form each 1026bit block
- All 66B control blocks are sorted to front of 1026-bit block with f indicating if there are more control blocks, 4-bit POS indicating original position (row) of this control block
- Minimum 2-bit Hamming distance between coding for block types with terminate /T/ in different positions

Input Data	BI	lock Pay	load																
Bit Position:	0																		63
Data Block Format:																			
D0D1D2D3/D4D5D6D7		D0			1		D	2		D3		[D4		D5		D6	D7	
		ock Typ eld	Гуре																
C0C1C2C3/C4C5C6C7	f	pos	001	C)		C1		C2		Ca	3	C4		C5		C6	C	7
S0D1D2D3/D4D5D6D7	f	pos	010	0	1		D	2		D3		[D4		D5		D6	D7	
O0D1D2D3/C4C5C6C7	f	pos	100	0	1		D	2		D3		O0 C4			C5		C6	C	7
T0C1C2C3/C4C5C6C7	f	pos	110	0101			C1		C2	C2		C3 C4			C5		C6	C	7
D0T1C2C3/C4C5C6C7	f	pos	110	00110		D0			C2	C2		C3 C4			C5		C6	C	7
D0D1T2C3/C4C5C6C7	f	pos	110	01001		D0			D1		Ca	3	C4		C5		C6	C	7
D0D1D2T3/C4C5C6C7	f	pos	110	01010		D0			D1		D2		C4		C5		C6	C	7
D0D1D2D3/T4C5C6C7	f	pos	1010	01	D0			D1		1	D 2		D3		C5		C6	C	7
D0D1D2D3/D4T5C6C7	f	pos	101	10	D0		D1			[) 2		D3		D4		C6	C	7
D0D1D2D3/D4D5T6C7	f	pos	000	L C	0		D1			D2	D2 [D3		D4	-	D5	C	7
D0D1D2D3/D4D5D6T7	f	pos	011		0		D	1		D2			D3		D4		D5	D6	

Minimum Hamming distance 2

Alcatel·Lucent 🅢

40GbE MTTFPA when using transcoding

Probability of False Frame Generation

Coding Location of Bit error	Original 512b/513b	512b/514b 1024b/1027b 1024b/1026b	Improved by
Flag for 512b payload	1 x 10 ⁻¹⁵ x BER	1 x 10 ⁻¹⁷ x BER ²	One more header bit
Control block continuation flag (F)	8 x 10 ⁻¹⁵ x BER	None	Sequence check
Original position of control block (POS)	Negligible	(9 x 10 ⁻²⁰ x BER ³)	(Sequence check)
4 bit encoding of control block type (CB type)	2 x 10 ⁻¹⁴ x BER	2 x 10 ⁻¹⁶ x BER ²	Re-mapping CB type

40GbE MTTFPA when using transcoding

Summary of Appendix

- MTTFPA estimation has revealed that 512b/513b has issues against a bit error that hits
 - A flag bit for 512b payload
 - A control block header byte
 - 1 bit continuation flag (F)
 - 4 bit representation of 66B control block type (CB)
- MTTFPA can be improved by the following updates
 - Increase header bits
 - Add one more header bit, i.e. 512b/514b, or
 - Concatenate two 512b/513b blocks and add one more header bit, i.e. 1024b/1027b
 - Use additional compression and add one header bit; i.e. 1024b/1026b
 - Check 66B block sequence at the decoder
 - Re-map 4-bit representation of the control block type
- Potential "OTN compatibility" issue
 - MTTFPA can be improved to order of BER^2 at if transcoding is used in an error prone environment
 - Below performance of native 64b/66b, but still greater than lifetime of universe

