OTN mapping of MLD LAN Interfaces and thoughts on MLD stack

Stephen J. Trowbridge Alcatel-Lucent

OTN mapping of MLD LAN Interfaces

Conclusions from trowbridge_01_0108

- The logical serial LAN format that would follow from the MLD architecture is a bit-mux of virtual lanes rather than a sequence of 66B blocks.
 - o For parallel LAN, deskew is likely needed at the OTN ingress which requires recovery of 66B blocks
 - o 66B blocks must also be recovered to perform transcoding for 40 GbE into ODU2
 - o Option B2 appears to best meet the needs for a common method for OTN transport of parallel or serial 40 GbE and 100 GbE
- Option B2 Deskew the LAN virtual lanes at the OTN ingress (requires demuxing virtual lanes and recovering 64B/66B on each virtual lane). Remultiplex into a serial stream by assembling the 66B blocks in correct temporal order, resulting in a bitstream that looks like 10G Base-R but faster. At the OTN egress, demux the 66B blocks into 20 virtual lanes, remux bitwise into the required number of LAN lanes.

Four lane 40 GbE interface over OTN

Transcodable Virtual Lane Markers

Required for 40 GbE

- 512B/513B Transcoding proposal requires 16 or fewer control block types to be used in underlying 64B/66B code
- 10G Base-R 64B/66B coding uses 15 control block types
- 40G/100G may use fewer control block types if packet and ordered set start is restricted to an 8-byte boundary
- A single control block type can be used to encode a lane marker, with 56 bits available for a very sparse coding of the lane number
- Control blocks are restored to their original temporal position in the 64B/66B stream when the 513B blocks are decoded

Changes to 64B/66B for 40 GbE and 100 GbE given 8-byte boundary for packet start and ordered sets

Ordered sets can't start in 5 th lane	Input Data	S y n c	Block	Payload							
	Bit Position	01	2 65								
	$D_0 D_1 D_2 D_3 / D_4 D_5 D_6 D_7$	01	D ₀	D ₁	D ₂	D ₃	[D ₄	D ₅	D ₆	D ₇
	Control Block Formats:		Block Type Field		1		I	I	l		
	C ₀ C ₁ C ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	10	0x1e	C ₀	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇
\ \ .		10	0v2d	C _e	C,	C ₂	C ₀	0;	D	D ₀	
		10	0×22	C,	C,	62	C,		D,	D,	₽,
X	0, D, D, D, /S, D, D, D,	10	0x66	D₄	D	De	0.		De	De	D-7
Packets can't start in 5 th lane		10	0x55	D,	D2	D,	0,	0,	Dc	De	D-
	S ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ D ₆ D ₇	10	0x78	D ₁	D ₂	D ₃	[D ₄	D ₅	D ₆	D ₇
	O ₀ D ₁ D ₂ D ₃ /C ₄ C ₅ C ₆ C ₇	10	0x4b	D ₁	D ₂	D ₃	O ₀	C ₄	C ₅	C ₆	C ₇
	$T_0 C_1 C_2 C_3 / C_4 C_5 C_6 C_7$	10	0x87		C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇
	D ₀ T ₁ C ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	10	0x99	D ₀		C ₂	C ₃	C ₄	C ₅	C ₆	C ₇
	$D_0 D_1 T_2 C_3 / C_4 C_5 C_6 C_7$	10	0xaa	D ₀	D ₁		C ₃	C ₄	C ₅	C ₆	C ₇
	$D_0 D_1 D_2 T_3 / C_4 C_5 C_6 C_7$	10	0xb4	D ₀	D ₁	D ₂		C ₄	C ₅	C ₆	C ₇
	D ₀ D ₁ D ₂ D ₃ /T ₄ C ₅ C ₆ C ₇	10	0xcc	D ₀	D ₁	D ₂		D ₃	C ₅	C ₆	C ₇
	$D_0 D_1 D_2 D_3 / D_4 T_5 C_6 C_7$	10	0xd2	D ₀	D ₁	D ₂	0) ₃	D ₄	C ₆	C ₇
	$D_0 D_1 D_2 D_3 / D_4 D_5 T_6 C_7$	10	0xe1	D ₀	D ₁	D ₂	C) ₃	D ₄	D ₅	C ₇
	D ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ D ₆ T ₇	10	0xff	D ₀	D ₁	D ₂	[D ₃	D ₄	D_5	D ₆
	D ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ D ₆ T ₇	10	0xff	D ₀	D ₁	D ₂	[D ₃	D ₄	D ₅	D ₆

Figure 49–7–64B/66B block formats

5

Reference Architecture for assessing OTN "transparency"

OTN mapping of MLD LAN Interfaces

7

Alcatel·Lucent 🅢

No "pure" PCS since rate-adapt FIFO used to create space for lane markers (i.e., there is no 103.125Gbit/s or 41.25 Gbit/s stream of 64B/66B encoded MAC data only

Logical sequence of 66B encoded MAC data can be described, but there may not be a physical realization since the rate adapt FIFO will just be held up for the interval when lane markers are being inserted

41.2474823 Gbit/s of 66B encoded MAC data for 40 GbE 103.1187057 Gbit/s of 66B encoded MAC data for 100 GbE assuming lane markers every 16K blocks

9

41.25 Gbit/s of 66B encoded data with lane markers for 40 GbE 103.125 Gbit/s of 66B encoded data with lane markers for 100 GbE

10

LXAUI = 4 lanes of 10.3125 Gbit/s, each carrying one VL of 66B encoded data 1st gen CAUI = 10 lanes of 10.3125 Gbit/s, each carrying two bit-muxed VLs, each VI 66B encoded

2nd gen CAUI (based on OIF CEI25/28G?) could be 4 lanes of 25.78125 Gbit/s, each carrying five bit-muxed VLs, each VL 66B encoded

The set of virtual lanes with lane markers inserted may be the only logical interface that is stable across all generations of the technology

LXVL = 4 virtual lanes of 10.3125 Gbit/s, 66B encoded CVL = 20 virtual lanes of 5.1575 Gbit/s, 66B encoded

Conclusions

- It continues to appear that the most likely OTN mapping involves deskew of virtual lanes at OTN ingress and reconstruction of serialized sequence 66B blocks for OTN transport
- Performing multiple functions with the same FIFO may make it difficult to separate PCS and MLD architecturally
- Specifying logical interface for virtual lanes at an architectural boundary may allow specification in a way that doesn't change across generations of the technology