

100/40GE Max skew budget for MLD

IEEE P802.3ba Munich, May 2008

Brad Booth, Keith Conroy, Francesco Caggioni, Dimitrios Giannakopoulos – AMCC

Supporters

- Mark Gustlin, Gary Nichols Cisco
- Pete Anslow Nortel
- Farhad Shafai Sarance
- Craig Hornbuckle, Song Shang SMI

Total Skew introduced end-to-end

- Skew considered in this presentation is max lane-to-lane skew, not P-N skew in a differential pair
- We need to add up all of the skew to see how much total skew must be compensated for at the receiver
- Skew contributors are PCS/MLD, Electrical interface, PMD/PMA and transmission skew, can be broken further into:
 - TX PCS/MLD
 - TX Electrical (PCS to PMA)
 - TX PMD/PMA
 - Transmission (medium)
 - RX PMD/PMA
 - RX Electrical (PMA to PCS)
 - RX PCS/MLD

PCS/MLD skew (TX and RX)

- Skew could be introduced due to 10G Tx SerDes FIFOs not aligned, difference in FIFO fill translates into skew
- Basically, each SerDes has its own FIFO, all 10 (100 GE) or 4
 (40 GE) FIFOs should be aligned if possible to reduce skew –
 essentially "reset" the pointers within some tolerance
- Another contributor can be the high speed serializer or deserializer stage in the SerDes
- 2 case studies: ASIC or FPGA solution

PCS/MLD skew – ASIC case

MLD i/f: 10 lanes for 100 GE or 4 lanes for 40GE @10G

ASIC skew

- ASICs can integrate 10G SerDes technology. This is assuming all 10 (100 GE) or 4 (40 GE) SerDes in same chip
- This should potentially introduce only a small amount of skew quantified by the uncertainty on the FIFO reset mechanism and de/serializer-related skew
- There should be no skew in the stages feeding the Tx FIFOs
- Total amount of TX skew should be in the order of 1.8 ns for reset/serializer uncertainty and another 0.2 ns for skew induced from driver/package, total of upto 2 ns
- Numbers for RX side are also in the order of upto 2 ns

PCS/MLD skew - FPGA case

MLD i/f: 10 lanes for 100 GE or 4 lanes for 40GE @10G

FPGA solution with external 10G SerDes devices

- Since current FPGA technology does not support 10G links (SerDes), board level solutions need to connect a MAC/PCS FPGA to 10 (100 GE) or 4 (40 GE) 10G SerDes devices
- Assuming a 16-bit i/f between FPGA and external 10G
 SerDes: still need internal FPGA SerDes to convert from a wide databus to serial 644 Mb/s (16 of them per 10G) a 4-bit or 2-bit i/f are alternative options
- Stages feeding the internal SerDes can introduce upto
 12.8 ns (2x64 bits) of skew
- Number of pins and internal FPGA SerDes required might prohibit single-FPGA device implementation for 100GE, unless narrower external busses are used (RXAUI for example)

- FPGA solution with external 10G SerDes devices (cont.)
 - External SerDes devices are difficult to synchronize, so skew can be introduced by different fill levels in their FIFOs – with a FIFO size of 8 by 16 bits, could have a skew of 7*1.6 ns = 11.2 ns (applies to Tx, no FIFO in Rx)
 - Add in upto 1.5 ns max for serializer skew
 - In Rx, no FIFO is needed, deserializer skew can be upto
 1.5 ns
 - Do not expect electrical skew in a 16-bit clocked i/f
 @644M between FPGA and external SerDes

- Calculation of skew requires modeling using controlled impedance traces on standard FR4 low-cost PCBs
- A good starting point would be the XFI interface for a chip to chip interconnect
 - current XFI i/f allows for 9.6dB of loss @5.5GHz
 - allows for a range from 1" to 8-10" typically

- If we assume a 10" range then the upper bound of skew is 10", which translates into 10*220ps/in = 2.2ns, so 4.4 ns for TX and RX − Could never happen ☺
- A more realistic scenario would be 1-2" of board skew, 2" translates to 0.88 ns
- PCB designers could give more accurate skew data, depends on board size, number of layers etc
- Propose a generous 4" of trace length difference allowance, equates to 1.76 ns for both RX and TX

PMD/PMA skew (TX and RX), 4x25G

MLD protocol supports bit muxing at the MLD i/f as well as at the line side

PMA is a simple bit MUX/DeMUX

 internal skew should be less than 0.4 ns (per chip, per direction), including analog and digital skew

PMA to PMD connection

- Traces should in any case be carefully laid out
- Should be less than 1" (per direction), which is 0.45 ns (RX and TX)

Transmission skew

- Dependent on PMD type
- For an SMF optical solution, a 10Km range has a max skew @1300 nm of 1.7ns for transmission skew (4x25G or 4x10G case)
- For a parallel fiber MMF case @850nm, assuming 44.3ps/m skew accumulation, a 100m range results in 4.43 ns of skew
- Objective for copper is 10m, therefore the skew contribution should be smaller than the optical cases
- Not a current objective, but if in the future a 80 km solution is used, then 80 km @ 1550 nm (800 GHz spacing in C band, 4x25G) would result in a 33.2 ns skew

Max skew budget – 40GE

- In all modes:
 - TX electrical (FPGA): 25.5+0.88+0.62 = 27 ns
 - RX electrical (FPGA): 14.3+0.88+0.62 = 15.8 ns
 - TX+RX electrical (FPGA) = 42.8 ns
- 10Km SMF, CWDM mode
 - Optical interface (1300 nm, 4x10G): 1.7ns
 - TOTAL: 42.8 + 1.7 = 44.5 ns
- 100m MMF, parallel fibers
 - Optical interface (850 nm): 4.43ns
 - TOTAL: 42.8 + 4.43 = 47.23 ns
- 300m MMF, parallel fibers (not an objective)
 - Optical interface (850 nm): 13.29ns
 - TOTAL: 42.8 + 13.29 = 56.09 ns

Max skew budget – 100GE

- In all modes:
 - TX+RX electrical (FPGA) = 42.8 ns (same as in 40GE)
- 10Km SMF, CWDM
 - Optical interface (1300 nm, 4x25G): 1.7ns
 - TOTAL: 42.8 + 1.7 = 44.5 ns
- 40Km SMF, DWDM
 - Optical interface (800 GHz spacing): 0.72ns
 - TOTAL: 42.8 + 0.72 = 43.52 ns
- 80Km SMF, DWDM (not an objective)
 - Optical interface (1550 nm, 800 GHz spacing): 33.14ns
 - TOTAL: 42.8 + 33.14 = 75.94 ns
- 100m MMF, parallel fibers
 - Optical interface (850 nm): 4.5ns
 - TOTAL: 42.8 + 4.43 = 47.23 ns
- 300m MMF, parallel fibers (not an objective)
 - Optical interface (850 nm): 13.29ns
 - TOTAL: 42.8 + 13.29 = 56.09 ns

Contributor	Max Skew (ns) for objectives
PCS/MLD TX	2 (ASIC)
	12.8+11.2+1.5 = 25.5 (FPGA solution)
Electrical MLD i/f TX	0.88
PMA/PMD TX	0.62
Transmission	1.7 Optical SMF (4x10 or 4x25G @1300nm)
	4.43 Parallel Fiber MMF (4x or 10x10G @850nm)
PMA/PMD RX	0.62
Electrical MLD i/f RX	0.88
PCS/MLD RX	2 (ASIC)
	12.8+1.5 = 14.3 (FPGA solution)
TOTAL	11.43 (ASIC)
	47.23 (FPGA solution)

Proposals for skew contributors

 Propose a 4" MLD interface board trace skew which results in 1.76 ns skew (total RX+TX)

 Propose a 1" board trace skew for PMA to PMD electrical skew (0.44 ns total RX+TX)

Max Skew budget proposal

- From summary Table:
 - max_estimated_skew = 47.23 ns (for objectives)
- Propose allowing for a wide margin
 - for future technology (80 Km reach e.g. ?)
 - even a number much higher seems acceptable since total memory at PCS/MLD Rx end is still small (reduces risk)
 - bigger buffers do not result in more latency (latency is determined by FIFO fill)
- PROPOSAL = 204.8 ns
 - FIFO size needed for deskew at PCS/MLD remote end:
 - 40GE: 2048 bits per VL (4 VLs @ 10G), TOTAL memory of 8192 bits
 - 100 GE: 1024 bits per VL (20 VLs @ 5G), TOTAL memory of 20480 bits

Thank you!

Backup - Fiber characteristics tool

 Fiber characteristics tool (spreadsheet) officially adopted by IEEE and used by P. Anslow to calculate transmission skew is in:

http://www.ieee802.org/3/ba/public/tools/Fibre characteristics V 3 0.xls