Proposal for a PMD for 100GBASE-SR10 and 40GBASE-SR4 and Related Specifications

Petar Pepeljugoski - IBM Piers Dawe, John Petrilla - Avago Technologies John Dallesasse, Kenneth Jackson - Emcore Lew Aronson, Jonathan King, Chris Cole - Finisar Mike Dudek, Jack Jewell – JDSU Phil McClay - Zarlink

Supporters and Contributors

- John Petrilla Avago Technologies
- Piers Dawe Avago Technologies
- Ali Ghiasi Broadcom
- Brad Booth AMCC
- Scott Kipp Brocade
- Robert Snively Brocade
- John Dalesasse Emcore
- Kenneth Jackson Emcore
- Lew Aronson Finisar
- Chris Cole Finisar
- Jonathan King Finisar
- Mike Dudek JDSU
- Jack Jewell JDSU
- Hong Liu Google
- John Ewen IBM
- George Oulundsen OFS Optics

- Petar Pepeljugoski IBM
- Alessandro Barbieri Cisco
- Mark Nowell Cisco
- Tom Palkert Luxtera
- Ryan Latchman Gennum
- Dan Dove ProCurve Networking by HP
- John Abbott Corning
- Steve Swanson Corning
- Doug Coleman Corning Cabling Systems
- Robert Lingle OFS Optics
- Paul Kolesar CommScope Inc.
- David Cunningham Avago Technologies
- Rick Pimpinella Panduit
- Russ Granger US Conec
- Mike Hughes US Conec
- Phil Mcclay Zarlink

Outline

- Proposal of a PMD to address 802.3ba objectives to reach 100m over OM3 at 100 Gb/s and 40 Gb/s
 - 10 lane parallel, short wavelength based PMD for 100GBASE-SR10
 - 4 lane parallel, short wavelength based PMD for 40GBASE-SR4
- Same per-lane specifications for both 100 Gb/s and 40 Gb/s PMD
- Proposal enables direct connection of limited, non-retimed modules to a host ASIC

Motivation for Non-retimed Limiting Parallel PMD Proposal

- 10 (4) parallel links operating at 10.3125 GBd utilize low cost, high performing 10 Gb/s optics and electronics used today in 10GBASE-S links
 - Limited, un-retimed interface is the highest density, lowest power, lowest cost 100m solution today
 - Uses existing, viable semiconductor technology
 - Uses known specification methods refined in SFP+ and 8GFC
- The 10 (4) optical lanes directly map the 10 (4) electrical lanes, without muxing or translation, retiming or deskewing
 - Works with all proposed striping methods
- This proposal is supported by multiple vendors and users and is economically feasible and competitive with other alternatives

802.3ba PMD Block Diagram

- TP1, TP2, TP3 and TP4 are traditional labels in 802.3 for interfaces of a fiber optics link.
- Two physical interfaces are introduced between the PMA and PMD (TP1 and TP4)
 - PMA may be in the host ASIC, PMD is the optical module
- The block diagram below shows relevant elements and interfaces for a link between two PMAs. The patch cord is included for the definition of TP2.

Intermediate fiber connectors are not shown

Proposal

- 10 parallel lanes @ 10.3125 GBd for 100GBASE-SR10 over OM3 fiber
- 4 parallel lanes @ 10.3125 GBd for 40GBASE-SR4 over OM3 fiber
- No glue chip required
 - See also last slide

Operating range

- 0.5-100m over OM3 fiber with 1.5 dB allocated for connector loss
- This is more than sufficient to cover
 - all distances in HPC environment
 - almost 100% of Enterprise Data Center Client-to-Access Channels
 - almost 90% of Enterprise Data Center Access-to-Distribution Links
 - almost 85% of Enterprise Data Center Distribution-to-Core Channels
- See flatman_01_0108, Data Centre Link Survey

Transmitter specifications (each lane)

Description	Value	Unit
Signaling speed (nominal)	10.3125	GBd
Signaling speed variation from nominal (max)	±100	ppm
Center wavelength (range)	840-860	nm
RMS spectral width (max)	0.65	nm
Average Launch Power (max) (2)	1 ⁽¹⁾	dBm
Launch Power (min) in OMA	-3 (1), (3)	dBm
Average launch power of OFF transmitter (max)	-30	dBm
Extinction ratio (min)	3	dB
RIN ₁₂ OMA (max)	-128 to -132 ^{(1),(3)}	dB/Hz
Optical Return Loss Tolerance (max)	12	dB
Encircled Flux	> 86% @ 19um, < 30% at 4.5um ⁽¹⁾	
Transmitter eye mask definition	TBD	
Aggregate TP2 signal metrics (4)	TBD	TBD
TP1 jitter allocation	0.3 ⁽⁵⁾	U.I.

⁽¹⁾ subject to further study

⁽²⁾ see presentation on eye safety by J. Petrilla at March 2008 meeting

⁽³⁾ to be made informative if aggregate signal parameter includes the effect

⁽⁴⁾ for further study, e.g. TDP, TWDP, etc.

⁽⁵⁾ for further study, intermediate between 10G SFP+ and 8GFC

Receiver characteristic (each lane)

Description		
Signaling speed (nominal)	10.3125	GBd
Signaling speed variation from nominal (max)	± 100	ppm
Center wavelength (range)	840-860	nm
Average receiver power (max)	1 ⁽¹⁾	dBm
Average power at receiver input (min)	-7.9 ^{(1),(2)}	dBm
Receiver reflectance (max)	-12	dB
Stressed receiver sensitivity in OMA (max)	TBD	dBm
- Vertical eye closure penalty (target)	TBD	dB
- Stressed eye jitter (target)	TBD	UI pk-pk
TP4 jitter allocation	0.7	UI

⁽¹⁾ For further study

⁽²⁾ Depends on connector loss

Link and Cable Characteristic

Parameter	Value	Unit
Supported fiber types	50µm OM3	
Effective Modal Bandwidth	2000*	MHz*km
Power Budget	>8.3**	dB
Operating Range	0.5-100	m
Channel insertion loss	1.9***	dB

* - depends on launch conditions

** - for further study

*** - connector loss under study

Further Work

- Jitter -> supporting presentation(s) at this meeting
 Further work to investigate crosstalk
- Connector loss -> supporting presentation at this meeting
- Fine tune parameters/eliminate TBDs
 - Some TBDs may be present in first draft
- Compliance/testing simplification
 - Eg. Aggregate TP2 signal metrics
- Study impact of Encircled Flux specs on link performance -> data to be presented at next meeting

Conclusion

- We propose 10 (4) lane parallel short wavelength based PMD supporting limited non-retimed interface operating at 10.3125 GBd for 100GBASE-SR10 (40GBASE-SR4)
- This proposal is the highest density, lowest power consumption and lowest cost 100m solution today that satisfies the 100m distance objective over OM3 fiber
- This proposal uses viable, proven semiconductor technology
- It plans using known specification methodologies refined in other standards
- It has broad support from multiple vendors and users

Compatible with in-box link extenders Diagram for discussion

PMA is a CDR, possibly with simple EDC * 10GBASE-KR PMA/PMD is different