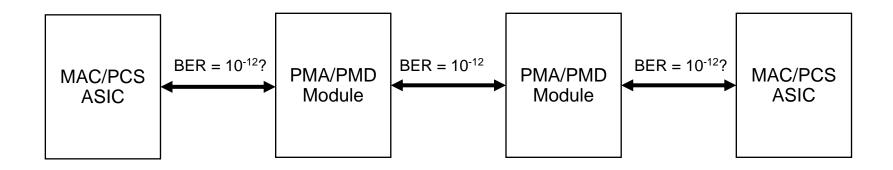
BER objective for nAUI I/F

IEEE 802.3ba TF Dallas November 2008

Mark Gustlin – Cisco Mike Li – Altera

Supporters


- Ali Ghiasi Broadcom
- Ryan Latchman Gennum

Background

Our Project BER objective is:

- Support a BER better than or equal to 10⁻¹² at the MAC/PLS service interface
- But the Optional nAUI is just one link in the chain of interfaces, should its BER be 10⁻¹² or something better?

Background

- If we have three segments, each with a BER of 10⁻¹², then the overall BER objective of 10⁻¹² is not met (instead we get 3x10⁻¹²)
- If we leave the PMD to PMD link at 10⁻¹² then the nAUI I/F should be at least a couple of orders of magnitude better to not significantly impact the overall BER of the system

Why we need a better BER for nAUI

- If nAUI is anything like XAUI, it will gain widespread industry acceptance for many applications
- A chip-to-chip BER of 10⁻¹² is <u>not</u> sufficient for many applications (too many drops, see table below for 100GbE)
- But it takes a long time to test to 10⁻¹⁵? Not necessary:
 - ➢ Design for 10⁻¹⁵
 - Test and extrapolate to 10⁻¹⁵ (for PMA, BER at 10⁻⁹ or smaller is largely affected by small probability random jitter (RJ) that is well-modeled by Gaussian, enabling accurate extrapolation)

BER	Packet drops per Minute	Packet drops per hour
10 ⁻¹²	6	371
10 ⁻¹³	.6	37
10 ⁻¹⁴	.06	3.7
10 ⁻¹⁵	.006	.37

Feasibility: Today's Transceiver Can Support BER =10⁻¹⁵

Experimental Results From A 40 nm FPGA (Altera) SERDES Test Chip Transmitter

Test Pattern

PRBS 2³¹-1

• Vod

600 mV

• DJ (δ-δ)

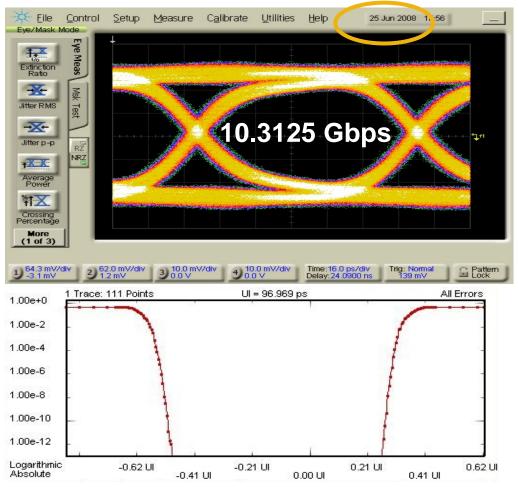
5.08 ps, 0.0524 UI

Exceeds D1.0 XLAUI/CAUI requirement (0.17 UI)

• RJ (rms)

1.46 ps, 0.0151 UI

• TJ (@ BER = 10⁻¹², measured)


25.6 ps, 0.264 UI

Exceeds D1.0 XLAUI/CAUI requirement (0.32 UI)

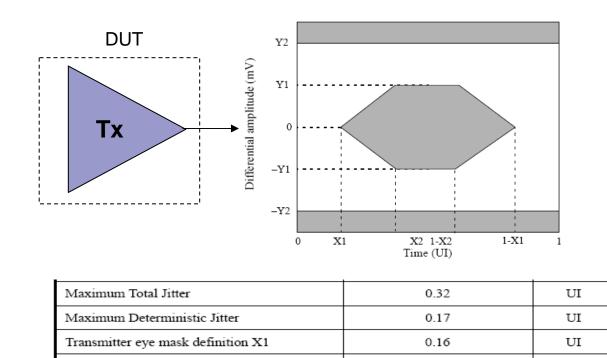
• TJ (@ BER = 10⁻¹⁵, extrapolated)

28.26 ps, 0.291 UI

Still exceeds D1.0 XLAUI/CAUI requirement (0.32 UI)

nAUI Transmitter Signaling/Jitter Test

0.38

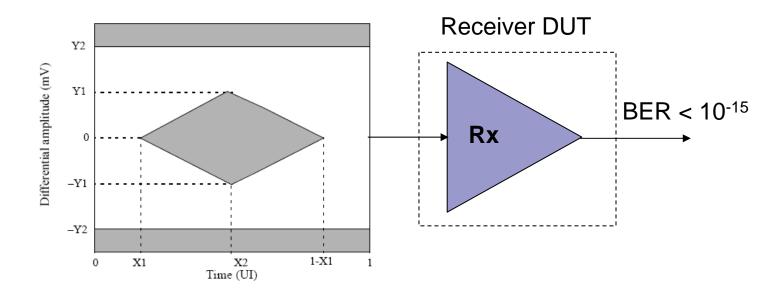

190

380

UI

тV

тV


Transmitter eye mask definition X2

Transmitter eye mask definition Y1

Transmitter eye mask definition Y2

- Eye mask will be corresponding to BER=10⁻¹⁵ rather than 10⁻¹²
- Gaussian for random jitter/noise will be used for extrapolation from BER=10⁻¹² to BER=10⁻¹⁵

nAUI Receiver Signaling/Jitter Test

Maximum Total Jitter	0.62	UI
Maximum non-EQ Jitter (TJ - ISI)	0.42	UI
Receiver eye mask definition X1	0.31	UI
Receiver eye mask definition X2	0.5	UI
Receiver eye mask definition Y1	45	mV
Receiver eye mask definition Y2	425	mV

Conclusions

A BER objective for the nAUI of 10⁻¹⁵ is reasonable
Chip-to-chip interfaces must be have a BER < 10⁻¹²
An objective of 10⁻¹⁵ is achievable with today's technology
With a 10⁻¹⁵ objective for the nAUI, the PMD interface objective can remain at 10⁻¹²