A comment on Table 88-7 and 88-8 in Draft 1.0

IEEE802.3 ba Task Force 9-13 November 2008

Hirotaka Oomori
Chris Cole
Kazuyuki Mori
Masato Shishikura

Sumitomo Electric
Finisar
Fujitsu
Opnext

Introduction

> One of the solutions to reduce the cost of 100GBASE-LR4 is leveraging DML. But some of the parameters in the optical spec (Table. 88-7, 88-8) would be better to be tweaked for DML use.
$>$ This material shows what the issues are and proposes the remedy of this issue.

Optical specs in 100GBASE-LR4

Description	100 GBASE -LR4	Unit
Signaling speed per lane (range)	$25.78125 \pm 100 \mathrm{ppm}$	GBd
Lane wavelengths (range)	1294.53 to 1296.59 1299.02 to 1301.09 1303.54 to 1305.63 1308.09 to 1310.19	nm
Side-mode suppression ratio (SMSR), (min)	30	dB
Total average launch power (max)	10.0	dBm
Average launch power per lane (max)	4.0	dBm
Average launch power per lane ${ }^{\mathrm{a}}$ (min)	-3.8	dBm
Optical Modulation Amplitude (OMA), each lane (max)	4.0	dBm
Launch power per lane (min) in OMA minus TDP		
Optical Modulation Amplitude (OMA), each lane (min)	-1.8	dBm
Transmitter and dispersion penalty, each lane (max)	-0.8	dBm
Average launch power of OFF transmitter, each lane (max)	2.2 (See editors note)	dB
Extinction ratio (min)	-30	dBm
RIN 12 OMA (max)	4.0	dB
Optical return loss tolerance (max)	-132	$\mathrm{~dB} / \mathrm{Hz}$
Transmitter reflectance ${ }^{\text {c (max) }}$	12	dB
Transmitter eye mask definition \{X1, X2, X3, Y1, Y2, Y3\}	-12	TBD

Description	100GBASE-LR4	Unit
Signaling speed per lane (range)	$25.78125 \pm 100 \mathrm{ppm}$	GBd
Lane wavelengths (range)	$\begin{aligned} & 1294.53 \text { to } 1296.59 \\ & 1999.02 \text { t } 1301.09 \\ & 1303.54 \text { to } 1305.63 \\ & 1308.09 \text { to } 1310.19 \end{aligned}$	nm
Receive power, per lane (OMA) (max)	4.0	dBm
Average receive power, per lane (max)	4.0	dBm
Damage threshold ${ }^{\text {a }}$	5.0	dBm
Average receive power, per lane ${ }^{\text {b }}$ (min)	-10.1	dBm
Receiver reflectance (min)	-26	dB
Receiver sensitivity (OMA), per lane (max)	-8.1	dBm
Stressed receiver sensitivity (OMA), per lane ${ }^{\text {c }}$	-6.3	dBm
Vertical eye closure penalty, ${ }^{\text {d }}$ per lane	1.8	dB
Receive electrical 3 dB upper cutoff frequency, per lane (max)	31	GHz

$$
\begin{array}{ll}
\text { Launch OMA max : } & 4.0 \mathrm{dBm} \\
\text { Launch OMA min : } & -0.8 \mathrm{dBm} \\
\text { Receive OMA min : } & -8.1 \mathrm{dBm}
\end{array}
$$

Level diagram per lane as per 100GBASE-LR4 baseline

\checkmark The Transmitter launch OMA range is from -0.8 dBm to 4.0 dBm
\checkmark The range of 4.8 dB is 1.66 dB less than that in the 40 GBASE -LR4.(See appendix)

Very narrow margin in Transmitter launch OMA for 100GBASE - LR4

Assumptions

Very narrow margin : 0.3dB
Power change over life (+/- 0.5dB)
Power change over the operation temp. in TOSA (+/-1.0dB)
Maximum deviation of MUX insertion loss per lane from the typical value (+/- 0.6dB)
(Temperature dependence, PDL, power change because of LD wavelength drift)
Power change by mating/demating (+/- 0.15 dB)

What is the issue in 100GBASE-LR4?

> According to the last foil, transmitter launch OMA should be set in between 1.45 dBm and 1.75 dBm .
$>$ If EML based TOSAs are leveraged, the launch OMA might be set in this very narrow range with high cost. Because LD bias current of EA DFB just has to be adjusted precisely.
$>$ However, it is difficult to build the DML-based TOSA into the transceiver because the modulation bandwidth (i.e. relaxation frequency) of laser diode related to its output power closely.

Relationship between relaxation frequency and output power

Assumptions:

- Output average power and relaxation frequency are proportional to "IIIth" and square root of "I-Ith" , respectively.

$$
\begin{aligned}
& P=\eta\left(I-I_{t h}\right) \\
& f_{r}=\varsigma \sqrt{I-I_{t h}}
\end{aligned}
$$

- +/-5\% variance in slope efficiency (η) and in slope value of relaxation frequency (ζ)
- IEEE PTL Vol.19, p1436 as a reference of typical value of η and $\zeta . ~ \eta=0.46 \mathrm{~W} / \mathrm{A}$, $\zeta=2.8 \mathrm{GHz} / \mathrm{mA}^{0.5}$

Requirement for launch OMA margin

Assumptions:

- LD drive current is suppressed as much as possible in terms of low power consumption.
- Fixed optical coupling loss of TOSA regardless of the bandwidth of laser chip
- Same extinction ratio from the output in any case.

Launch OMA margin shall have more than 1.3 dB if DML based 100 GbE is taken into account. 1.0 dB enhancement of OMA launch margin should be needed.

Remedy for this issue

$>$ The comment is:
$>$ Transmitter launch OMA margin seems to be too narrow to have good yield. The root cause is located at the low launch OMA max and the low receive OMA sensitivity. The several numbers in Table 88-7 and 88-8 shall be modified.
$>$ The remedy is:
$>$ Transmitter launch OMA max shall be changed from 4.0 dBm to 4.5 dBm
$>$ Transmitter Average launch (max) is changed from 4.0dBm to 4.5 dBm
$>$ Receiver OMA sensitivity shall be changed from -8.1 dBm to -8.6dBm

Receiver Overload

Assumptions:

- No splice loss and insertion loss of DEMUX.

\checkmark If less than 0.85A/W of responsivity (max) and over 2.5mAp-p of input current to TIA (max) are assumed, The number of Receive OMA (max) can be changed to 4.5 dBm with some margin.

Receiver Sensitivity

Assumptions:

- Shot noise is ignored. (0.1dB degradation due to this factor)
- $0.55 \mathrm{~A} / \mathrm{W}$ of responsivity as the worst case.
- 20 GHz of 3 dB bandwidth.

Less than 20 pArtHz of input referred noise density is assumed, -8.6 dBm of Receive sensitivity can be achievable even if $0.55 \mathrm{~A} / \mathrm{W}$ of responsivity

Level Diagram reflected the proposed remedies

\checkmark The launch OMA range of 5.8 dB is comparable to that in the 40GBASELR4.(See appendix)
\checkmark The values of several parameters in Table 88-7, 88-8 should be reviewed due to these remedies

Parameters required to change in Table 88-7 and 88-8

Description	100GBASE-LR4	Unit
Signaling speed per lane (range)	$25.78125 \pm 100 \mathrm{ppm}$	GBd
Lane wavelengths (range)	$\begin{aligned} & 1294.53 \text { to } 1296.59 \\ & 1299.02 \text { to } 1301.09 \\ & 1303.54 \text { to } 1305.63 \\ & 1308.09 \text { to } 1310.19 \end{aligned}$	nm
Side-mode suppression ratio (SMSR), (min)	30	dB
Total average launch power (max)	10.0-10.5	dBm
Average launch power per lane (max)	-4.0- 4.5	dBm
Average launch power per lane ${ }^{\text {a }}$ (min)	$-3.8-4.3$	dBm
Optical Modulation Amplitude (OMA), each lane (max)	$-4.0-4.5$	dBm
Launch power per lane (min) in OMA minus TDP ${ }^{\text {b }}$	$-1.8 \quad-2.3$	dBm
Optical Modulation Amplitude (OMA), each lane (min)	$=0.0$ c -1.3	dBm
Transmitter and dispersion penalty, each lane (max)	2.2 (See editors note)	dB
Average launch power of OFF transmitter, each lane (max)	-30	dBm
Extinction ratio (min)	4.0	dB
$\mathrm{RIN}_{12} \mathrm{OMA}$ (max)	-132	$\mathrm{dB} / \mathrm{Hz}$
Optical return loss tolerance (max)	12	dB
Transmitter reflectance ${ }^{\text {d }}$ (max)	-12	dB
Transmitter eye mask definition $\{\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 3\}$	TBD	

Description	100GBASE-LR4	Unit
Signaling speed per lane (range)	$25.78125 \pm 100 \mathrm{ppm}$	GBd
Lane wavelengths (range)	$\begin{aligned} & 1294.53 \text { to } 1296.59 \\ & 1299.02 \text { to } 1301.09 \\ & 1303.54 \text { to } 1305.63 \\ & 1308.09 \text { to } 1310.19 \end{aligned}$	nm
Receive power, per lane (OMA) (max)	-4.0- 4.5	dBm
Average receive power, per lane (max)	-4.0- 4.5	dBm
Damage threshold ${ }^{\text {a }}$	$5.0-5.5$	dBm
Average receive power, per lane ${ }^{\text {b }}$ (min)	-10.1-10.6	dBm
Receiver reflectance (min)	-26	dB
Receiver sensitivity (OMA), per lane (max)	8.1-8.6	dBm
Stressed receiver sensitivity (OMA), per lane ${ }^{\text {c }}$	-6.3- -6.8	dBm
Vertical eye closure penalty, ${ }^{\text {d }}$ per lane	1.8	dB
Receive electrical 3 dB upper cutoff frequency, per lane (max)	31	GHz

Conclusion

> DML based 100GbE transceiver is attractive from the low cost and low power consumption view points. but the launch OMA margin which is calculated from Draft 1.0 is too narrow for the transceiver.
> This very narrow margin comes from the low launch OMA and low receive OMA sensitivity.
$>$ The essential remedy for this issue is as following
$>$ Transmitter launch OMA (max) each lane shall be changed to 4.5 dBm
$>$ Receiver sensitivity (OMA) per lane (max) shall be changed to -8.6 dBm
> However, several parameters in Table 88-7 and 88-8 shall be also changed derivatively due to these remedies.

BACK UP

Parameters required to change derivatively by the remedies

The following parameters shall be changed derivatively in Table 88-7

1) Average launch power per lane (max)
\rightarrow According to 4.5 dB of 'OMA each lane (max)' and the view point of the eye-safety, this number shall be changed to 4.5 dBm
2) Total launch power (max)
\rightarrow According to 1), this number shall be changed to 10.5 dBm
3) Launch power per lane in OMA minus TDP \rightarrow According to the last slide, this number shall be changed to -2.3 dBm

Parameters required to change derivatively by the remedies

The following parameters shall be changed derivatively in Table 88-7 (cont.)

4) OMA each lane (min)
\rightarrow According to the proposed level diagram, this number shall be changed to -1.3dBm

The following parameters shall be changed derivatively in Table 88-8

1) Average receive power, per lane (max)
\rightarrow This number shall be as same number as 'Average launch power per lane (max)'. So, it shall be changed to 4.5 dBm
2) Damage Threshold
\rightarrow This number shall be changed to 5.5 dBm . Before, at 5.0 dBm threshold, this number is 1 dB up from the average receive power, per lane (max)

Level diagram per lane as per 40GBASE-LR4 baseline (ER=5.0dB)

Margin in Transmitter launch OMA for 40GBASE - LR4

