

MLSD/DFE Based Transceivers with a Partially Terminated Trellis

for IEEE 802.3bj 100Gb/s Backplane and Copper Assemblies

Dariush Dabiri

Supporters

- Sanjay Kasturia, Inphi
- Hamid Rategh, Inphi
- Will Bliss, Broadcom
- Howard Frazier, Broadcom
- Sudeep Bhoja, Broadcom
- Vasudevan Parthasarathy, Broadcom
- Matt Brown, APM
- Adee Ran, Intel
- Kent Lusted, Intel

Agenda

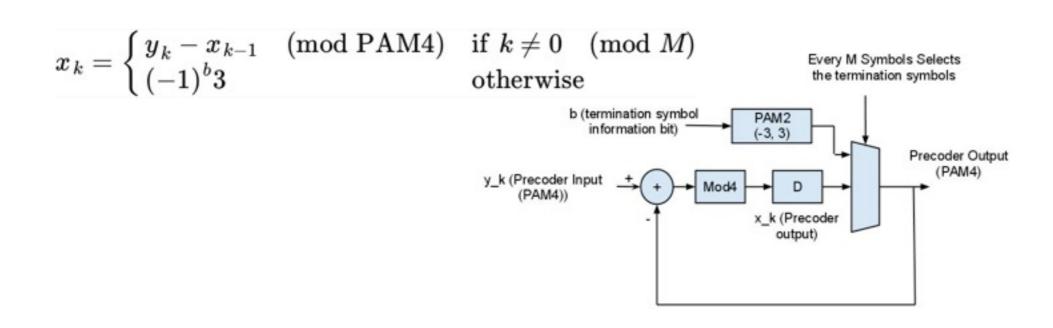
- Introduction
- Construction for Low Overhead Termination Symbols
- Transmitter
- Precoder Implementation
- MLSD Implementation
- MLSD Performance
- DFE Error Detection Using Termination Symbols
- Combined MLSD/DFE Implementation
- RS Erasures Using Termination Symbols
- Conclusions

Introduction

- Termination symbols introduced in dabiri_01_0911 enabled independent detection of the segments of the trellis with no overlap.
- Goals for this presentation:
 - -Introduce a new scheme that reduces the overhead of termination symbols for the same block length, and still enables no-overlap detection of trellis segments.
 - -Show how termination symbols could be used for DFE error detection that allows for:
 - Selective enabling of the MLSD detectors in order to save power.
 - Intelligent erasure marking for the RS decoder.

Construction

- The terminated trellis of in dabiri_01_0911 was constructed by forcing the state of the trellis to be known for every M symbols.
 - Termination overheard is 1/M for blocks of size M.
- In the new construction the state of the trellis is <u>not</u> fully known for every M symbols.
- The state of the trellis is known to be either -3 or 3:
 - –An information bit is used to select between the two levels:
 - Therefore the overhead is now 1/(2M).
 - -An alternative method is described in the back up slides.
- It can be shown the minimum Euclidean distance of the paths on the finite trellis segment is: $2\sqrt{2}$
 - -Therefore VA algorithm maintains the 3 dB asymptotic gain.
 - Termination bits have a <u>pre-FEC</u> error floor of 10^-19.


Transmitter

- In dabiri_01_0911 each termination symbol was determined by two bits generated from a PRBS sequence:
 - -Therefore it carries no information bit.
- In the new scheme, the termination symbol is a PAM2 level and therefore it carries one information bit.
 - Block termination symbols are introduced every 32 symbols.
 - Details of the frame structure can be found in brown_01_0112.
- Information bit of the termination symbols enjoys more protection (extra 9dB) of PAM2 signaling: {-3, 3}:
- Slight power variation every M symbols: (no spectral line)
 - -Alternative construction without power variation is doable.

Precoder Implementation

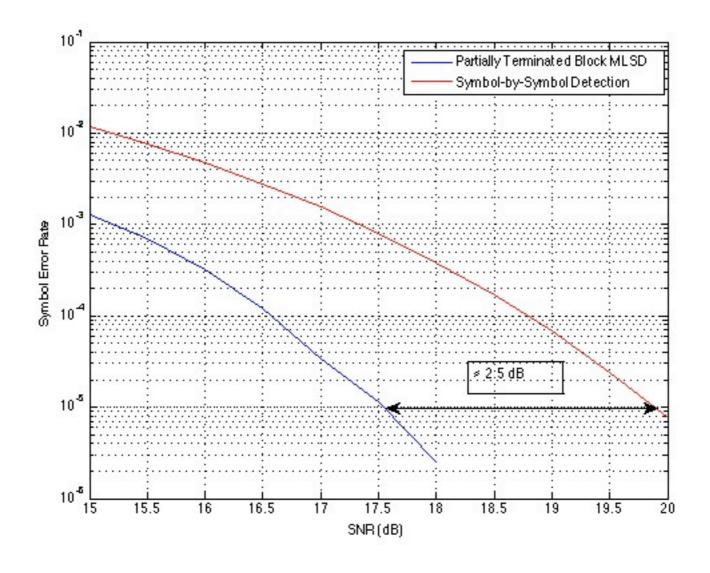
- Each termination symbol is used to reset the state of the precoder for every M symbols.
- The information bit of TS is encoded through FEC.
- The reseting scheme simplifies the precoder design by allowing overlapped operation between blocks.

MLSD Implementation

A 'text book' Viterbi Detector:

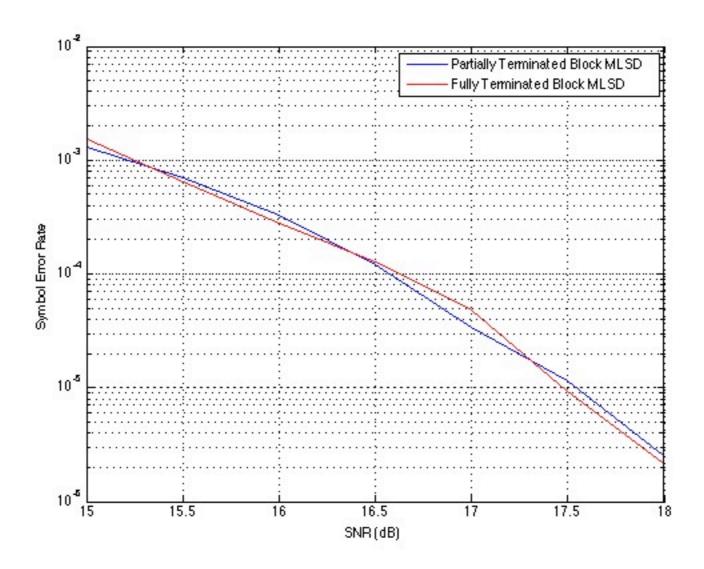
$$_{-}~~P_{k}(s) = \min(P_{k-1}(t) + B_{k-1}(t
ightarrow s))$$

–for
$$k=2,3,\ldots,N$$
, we have $s,t\in\{-3,-1,1,3\}$


-if k = 1,
$$t \in \{-3, 3\}$$

-if k = N+1,
$$s \in \{-3, 3\}$$

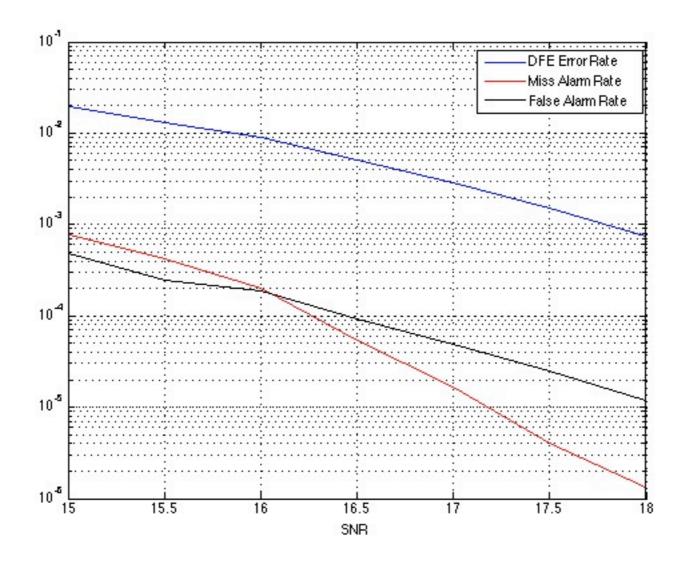
- Traceback:
 - –Starts at the state that minimizes $\,P_{N+1}(s)\,$
 - -Ends at k=1, i.e. no overlaps.


Simulation Results

 Results show the performance of the block by block detector compared to the symbol by symbol detector.

Simulation Results

 Results for full termination is almost identical with partial termination:


DFE Error Detection

- Error events for DFE with 1 + D (or close approximations) causes error patterns of the form +/-2 with alternating signs.
 - -Error events typically end when the input to the channel is +/- 3.
 - -1+D post-processing filters most of the error patterns but the two symbols at the start and the end of the pattern.
- Main observation:
 - One can extend the error pattern if the DFE slicer is allowed to exceed the saturation levels of +/-3.
 - –With a proper choice of block length, most of the error patterns can be extended to the termination symbols.
- Slicing at the termination symbols provides informations regarding to:
 - -the existence of the error and the sign of the error pattern.

Simulation Results

 With a very high probability any error at the DFE can be detected at the termination symbols.

Applications to the MLSD Receiver

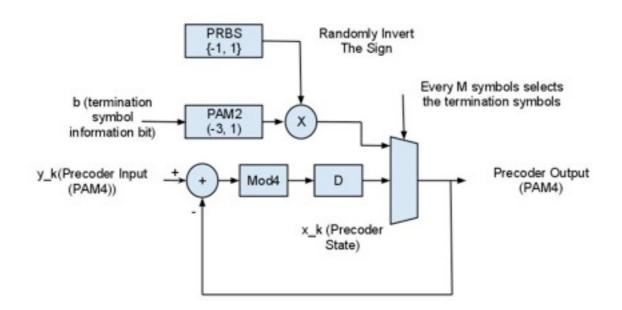
- MLSD arguably consumes more power than the DFE receiver.
- Using DFE error detection one can only enable MLSD only when DFE makes an error.
- Relatively short length of the termination blocks allows for low latency implementation.
- Low latency implementations of the Viterbi Algorithm are discussed in:
 - –J. J. Kong and K. K. Parhi, 'Low-Latency Architectures for High-Throughput Rate Viterbi Decoders', IEEE Trans. VLSI Systems, Vol. 12, No. 6, June 2004.
 - -R. Liu and K. K. Parhi, 'Low-Latency Low Complexity Architectures for Viterbi Decoders', IEEE Tans. CAS, Reg. Papers, Vol.56, No. 10, Oct. 2009.

Application to Erasure Decoding

- After 1 + D post processing typically two errors are created:
 - One at the beginning of the error pattern.
 - One at the end of the error pattern.
- One can rely on the error detection of the termination symbols to declare erasure for error/erasure RS decoding algorithms.
- Note that one can correct twice as many erasures with the same RS code compared to error only correction.

Sign of Error Detection

- Sign of the error of the pattern can be detected at the termination symbol.
- One can correct for the second error generated after 1+D post-processing.
- For the same SNR the number of errors that the RS decoder needs to correct can be reduced by as much as 1/2.


Conclusions

- Termination symbols provide opportunities for a variety of receiver implementations for both DFE and MLSD:
 - Low power combined DFE/MLSD implementation.
 - -Performance improvements of the RS decoder by declaring erasures or pre-correction of the tail bit of the error pattern.
- Termination symbols allows for shorter latency and power by allowing independent detection of nonoverlapping segments of the trellis.

Constant Power Termination Symbols

- Here the PAM2 levels are defined as {-3, 1}.
- No variation in power.
- Need sign randomization in order to avoid spectral lines.

Proof:

Definitions:

$$-X^{(l)} = \left\{x_k^{(l)}
ight\}$$
 : Input vector of the channel

$$-Y^{(l)} = \left\{ oldsymbol{y}_k^{(l)}
ight\}$$
 : Output sequence of the channel

$$oldsymbol{x}_{k}^{(l)} = oldsymbol{x}_{k}^{(l)} + oldsymbol{x}_{k-1}^{(l)}$$

$$-\Lambda^{(l)} = x_M^{(l)} + (-1)^{M+1} x_0^{(l)} = \sum_{j=0}^{M-1} (-1)^j y_{M-j}^{(l)}$$

$$-x_{M}^{(l)},x_{0}^{(l)}\in\{-3,3\}\Rightarrow \Lambda^{(l)}\in\{-6,0,6\}$$

$$-\Delta = \Lambda^{(1)} - \Lambda^{(0)} \in \{-12, -6, 0, 6, 12\}$$

$$x_{M}^{(l)},x_{0}^{(l)}\in(-1)^{
ho}\{-3,1\}\Rightarrow\Delta\in\{-8,-4,0,4,8\}$$

Proof:

- If $d_E^2(Y^{(1)},Y^{(0)}) < 8 \Rightarrow d_E^2(Y^{(1)},Y^{(0)}) = 4$
- ullet Since $d_E^2 \geq 4d_H$, implies
 - $-d_{H}=1$
- It means: there is only one index k such that $y_k^{(1)} \neq y_k^{(0)}$.
- It's a contradiction since:

$$\left| egin{aligned} d_E^2 = 4 \Rightarrow \left| y_k^{(1)} - y_k^{(0)}
ight| = 2 \Rightarrow \left| \Delta
ight| = 2 \end{aligned}$$

- Finally one can easily show that $d_E^2 \leq 8$, therefore:
 - $d_E^2=8$

