Power Considerations For 100GBASE-KR4 PHY

Oren Sela
Jonathan Malkiman
Samuel Attaly
Nov 2011

Supporters/Contributers

- Pravin Patel
- Mike Dudek
- Scott Kipp
- Piers Dawe
- Mike Peng
- Stephen Bates

Overview

- The Economic value of enabling the 100GigE over KR grade backplane has been proposed by the group
 - chalupsky_02_0311
 - parthasarathy_01_0111
- To Enable 100GigE over "legacy" systems need to meet their power budget
- Most challenging component power-wise is the switch blade
- Analysis overview-
 - Show the power budget for the switch blade on the majority of the 40GBASE-KR4 compatible systems
 - Accumulate all the power component excluding the 100GBASE-KR PHY
 - Show the estimated power budget for the PHY
- This analysis covers >70% KR4 compatible blade systems

Assumptions And Metrics

- Best case approach
 - Lowest power estimation for each component
 - Provide a max power budget for the PHY
- Only blade systems which support KR4 or are KR4 ready
 - Since KR lanes are single lane many KR compliant system used in the broad market potential are excluded
- 16/18 Blades systems
 - Switch blade is either 32/36 ports switch
 - 16/18 Internal KR4 ports
 - 16/18 External CR4/SR4/LR4

Switch Blade

Switch Blade Power Budget

Different Power Budgets

Maximum And Minimum Power Budget

Min-Max Power Budget

NOTE – The Minimum system is a 16 blade system

Power Components For Switch Blade

Component	40G Max [W]	100G Max [W]
Switching logic (excluding PMD)	55	55
Active Optics	1.5 (per port)	1.5 (per port)
Management CPU	10	10
Misc	9	9
Power supply efficiency	10%	10%

• Misc- All power consuming components:

• LEDs, Oscillators, EEPROMs, low speed signals

Max Power Budget

Max Power Budget

PHY Power Requirements

- PHY is a 4 lane full duplex as defined in 802.3bj objective
- PHY power includes:
 - PLLs
 - Transmitter power
 - Receiver power including all equalization analog and digital logic
 - CDR
 - FEC
 - PMD logic

System	Total Budget [W]	Per x4 [W]	Per Lane [W]
Minimum	10	0.31	0.08
Maximum	10	0.01	0.00
	47.5	1.32	0.33

Assume same power for KR4, CR4, nPPI PHY

Pass-Through Option

- Removes the core switching power consumption, lower processor power
- Increase the total power and cost due to additional rack switching
- Assume same encoding

Pass-Through Power Budget

Pass-Through Module - PHY Power Requirements

PHY power includes:

- PLLs
- Transmitter power
- Receiver power including all equalization analog and digital logic
- CDR

System	Total Budget [W]	Per x4 [W]	Per Lane [W]
Minimum			
	30	0.94	0.23
Maximum			
	67.5	1.88	0.47

Assume same power for KR4 and CR4/SR4 PHY

More Power Consumers

- Different modulation on CR4 and SR4 PMDs
 - Requires conversation in the optical module consumes more power
- Retimed optical interface
- Failover CPU
- External PHYs
 - Either on the internal or external switch side
- External switch memory

Summary

- To Support KR4 compatible system; Max PHY power requirements -
 - To support the majority of the systems 1W
 - To support any systems 1.3W
 - To support all systems 0.3W
 - Including PLLs, TX and RX
- Using a Pass-Through only option; Max PHY power-
 - To support the majority of the systems- 1.5W
 - To support any systems 1.8W
 - To support all systems 0.94W
 - Total Power and cost will be higher
 - Industry trend is moving from Pass-through to switches
- This is a best case analysis
 - Extra Margins Require
- Due to cooling constraints limited options to extend power budget

Conclusions

- To support the legacy 40GBASE-KR4 system aggressive power targets are needed
- PHY power consumption should be considered when analyzing system cost-
 - Example more expensive material can result in lower power architecture and as a result cheaper cooling and power supply
 - Green Data Center Require Low power design
- Material and PHY defined by 802.3bj must meet power requirements
 - PHY power target of ~1W

Thank You

