100G backplane PAM4 PHY encoding (revised)

IEEE P802.3bj

March 2012, Hawaii

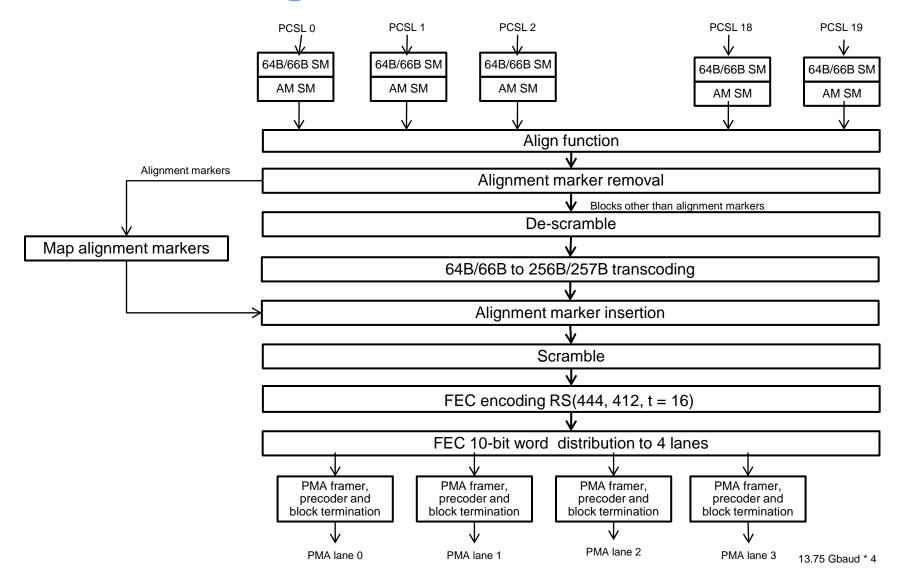
Matt Brown – AppliedMicro

Sudeep Bhoja - Broadcom

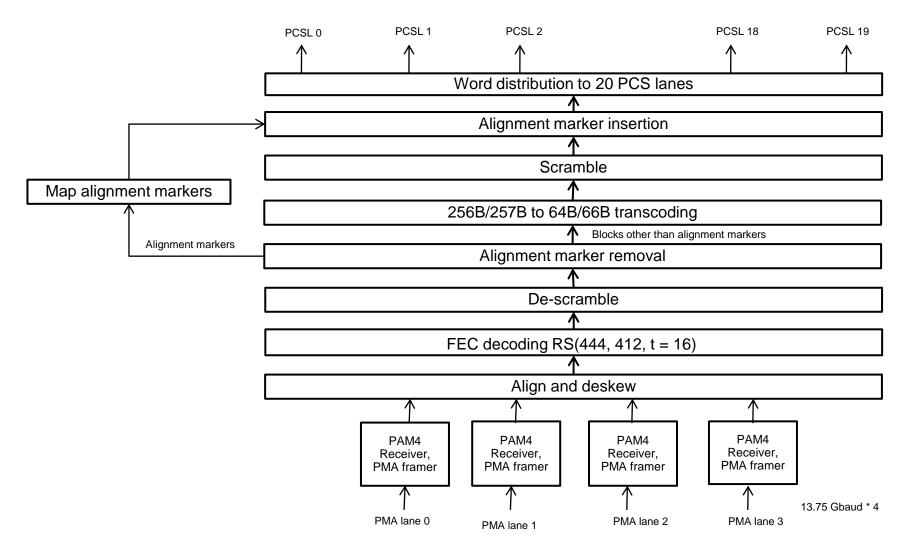
Contributors and Supporters

- Ran Adee, Intel
- Stephen Bates, PMC-Sierra
- Will Bliss, Broadcom
- David Chalupsky, Intel
- Dariush Dabiri, APM
- Dan Dove, APM
- Howard Frazier, Broadcom
- Ali Ghiasi, Broadcom
- Ziad Hatab, Vitesse
- Dimitrios Giannakopoulos, APM
- Adam Healey, LSI

- Beth Kochuparambil, Cisco
- Kent Lusted, Intel
- Richard Mellitz, Intel
- Venkatesh Nagapudi, APM
- Vasu Parthasarathy, Broadcom
- Jamal Riani, Marvell


Introduction

- Provide a strawman baseline specification for the PAM4 FEC, PMA, and PMD transmitter encoding.
- Revised from January presentation to incorporate 256B/257B transcoding and alignment marker mapping.


Transmitter process

- Transcoding: 256B/257B (was 512B/514B)
 - Aligns with NRZ (gustlin_01_0312)
- FEC: RS(444,412,T=16,M=10)
- PAM4 Symbols: Gray mapping,
 - {+1,+1/3,-1/3,-1} map to {10,11,01,00}
- Precoding: 1/(1+D) MOD 4
- PAM4 block termination: 1 PAM4 termination symbol per 32 PAM4 symbols
 - 63 data bits per 32 PAM4 symbols
- PAM4 symbol rate: 88 * 156.25 MHz = 13.75 Gbaud
- Tx pre-emphasis: 3 taps, one pre, one post
 - same structure as for 10GBASE-KR
- PAM4 test methodology and parameters addressed in bliss_01a_0911.

Tx encoding flow

RX decoding flow

PCS Lane Processing

- Synchronize to 64B/66B blocks on each PCS lane per 802.3ba 82.2.11.
- Synchronize to PCS alignment markers (64B/66B blocks) on each PCS lane per 802.3ba 82.2.12.
- Align (or deskew) <u>and re-order PCS</u> lanes based on alignment markers per 802.3ba 82.2.12.
- Descramble 64B/66B blocks per 82.2.15.
 - Required for transcoding.
- Same as for NRZ PHY.

Transcoding

- 256B/257B transcoding per cideciyan_01_0312.
- Map 64B/66B blocks to 256B/257B per gustlin_01_0312.
 - Alignment markers will not be transcoded, but instead will be remapped.
- Same as for NRZ.
- MTTFPA > 3.9E15 years
 - Post-FEC BER <= 1E-12, RS(444,412,16,10) FEC
 - Analysis on slide 36.
 - FYI Lifetime of universe ~= 13E9 years.

Scrambling

- Use self-synchronizing scrambler
 - Same scrambler as for PCS in 802.3ba 82.2.5.
 - All data bits including the 256B/257B header bits and alignment markers are scrambled.
- Same as for NRZ except...
 - Alignment markers are scrambled as well.
 - Need AM mapping to PAM4 to be balanced, randomized, and clock rich.
 - May be able to re-map AM's so that scrambling is not required.
 - Analysis required.
 - Ideally, re-mapping would be common to NRZ and PAM4.

FEC

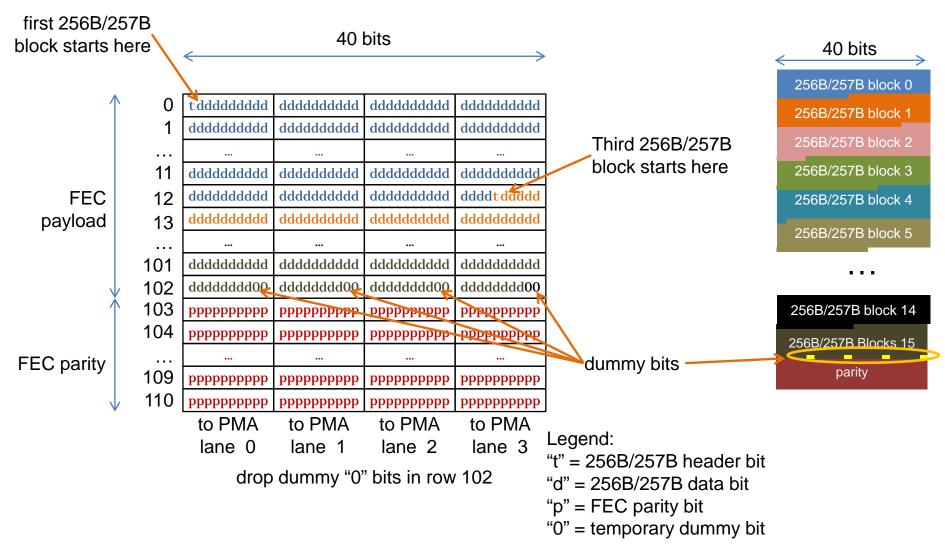
- RS(444,412,T=16,M=10) code format
 - single, efficient, dual-purpose (NRZ/PAM4) FEC core is possible if FEC generator math specified similarly for both
- FEC frame content
 - correctable payload = 412*10 = 4120 bits
 - parity = 32*10 = 320 bits
 - data = 64x 64B/66B blocks transcoded to 16x 256B/257B blocks
 - total data = 4112 bits
 - 8 dummy bits (4120-4112) per FEC frame required
 - 8 zeros added (assumed) for parity calculation
 - Payload words 408-411 will contain 8 data bits and 2 dummy bits.
 - one 8-bit word will end up on each of the 4 PMA lanes
 - dummy bits not transmitted
- FEC encoding is mandatory; negotiation is not required.

13.75GBaud Precoding/FEC Summary

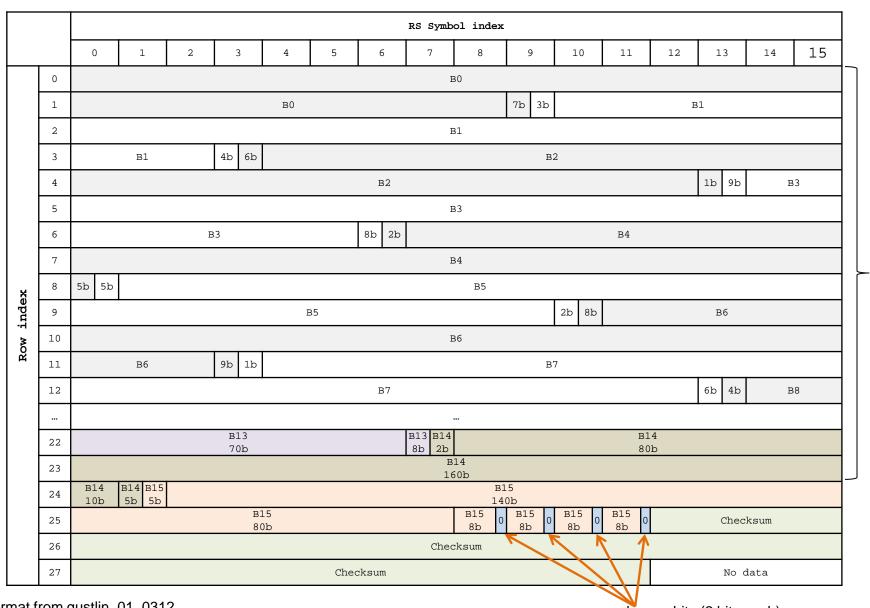
RS(444, 412, t = 16)	Delta (dB)	Coding Gain (dB) BER = 1E-15
Random Error		7.12
DFE Burst Error Penalty	-0.88	6.24
Extended KR channel 6.7% over clocking loss	-1.0	5.24 (<100ns total latency)

- ~6.7% over clocking (88*156.25 MHz)
- 5.24 dB Coding gain for Extended KR channel
- Overhead includes FEC parity & PAM4 block termination

Comparison of RS FEC candidate codes


FEC codes GF(2^10)	Total Coding Gain (dB)	Burst Coding Gain (dB)	Latency (ns)		
RS(444, 412, t = 16)	5.24	6.24	82 - 123		
RS(550, 520, t = 15)	5.1	5.9	102 - 154		
RS(546, 520, t = 13)	4.9	5.6	102 - 154		
RS(544, 520, t = 12)	5.0	5.6	102 - 154		
RS(540, 520, t = 10)	4.9	5.2	102 - 154		

- Codes in bhoja_01_0911 and cideciyan_01_1111 (found using computer search)
- RS(444, 412, t = 16) has best coding gain within 100ns target latency
 - Example implementation of 460K gates in 40nm CMOS has 99.9ns latency

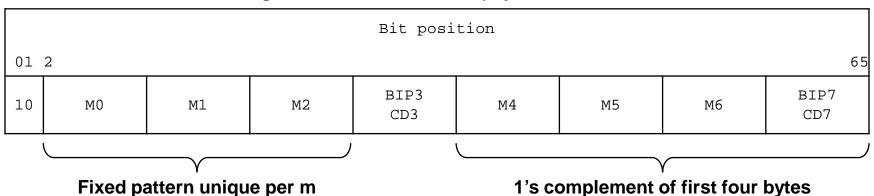

Mapping 256B/257B blocks to FEC frame

- 256B/257B blocks are concatenated and organized into a series of 10-bit FEC words.
 - Except for last four FEC words which are 8 data bits with 2 pad bits each (see FEC slide).

FEC frame structure

FEC frame structure

Format from gustlin_01_0312


IEEE P802.3bj, March 2012, Hawaii

dummy bits (2 bits each)

15

Alignment markers

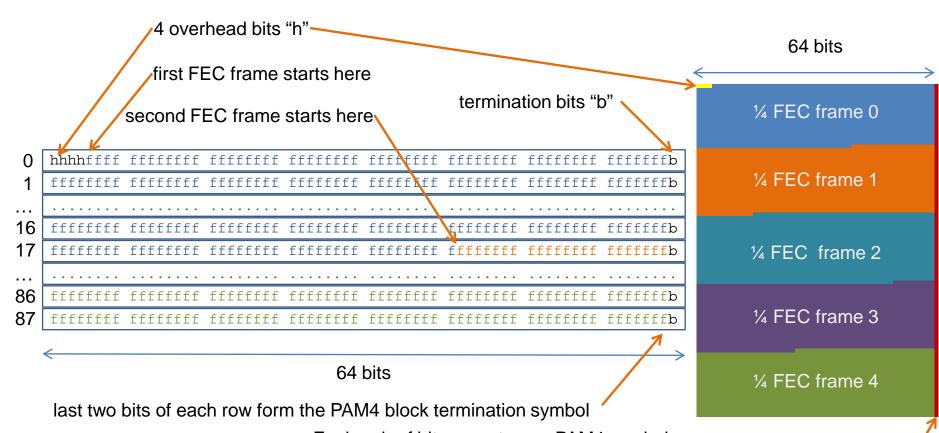
66-bit alignment marker m, 64-bit payload denoted as AM

Strip sync. header and map alignment marker payloads to appear on FEC lanes as shown

	RS symbol index												
	0 1 2 3 4 5	6 7 8 9 10 11 12	2 13 14 15 16 17 18	19 20 21 22 23 24 2	5 26 27 28 29 30 31								
FECL<0>	A0	A4	A8	A12	A16								
FECL<1>	A1	A5	A9	A13	A17								
FECL<2>	A2	A6	A10	A14	A18								
FECL<3>	А3	A7	A11	A15	A19								

FEC frame structure with AMs

			RS Symbol index														
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	A0 ₀	A1 ₀	A2 ₀	A3 ₀	A0 ₁	A1 ₁	A2 ₁	A3 ₁	A0 ₂	Al ₂	A2 ₂	A3 ₂	A0 ₃	A1 ₃	A2 ₃	A3 ₃
	1	A0 ₄	A1 ₄	A2 ₄	A3 ₄	A0 ₅	A1 ₅	A2 ₅	A3 ₅	A0 ₆ A4 ₆	A1 ₆ A5 ₆	A2 ₆ A6 ₆	A3 ₆ A7 ₆	A4 ₇	A5 ₇	A6 ₇	A7 ₇
	2	A4 ₈	A5 ₈	A6 ₈	A7 ₈	A4 ₉	A5 ₉	A6 ₉	A7 ₉	A4 ₁₀	A5 ₁₀	A6 ₁₀	A7 ₁₀	A4 ₁₁	A5 ₁₁	A6 ₁₁	A7 ₁₁
	3	A4 ₁₂ A8 ₁₂	A5 ₁₂ A9 ₁₂	A6 ₁₂ A10 ₁₂	A7 ₁₂ A11 ₁₂	A8 ₁₃	A9 ₁₃	A10 ₁₃	A11 ₁₃	A8 ₁₄	A9 ₁₄	A10 ₁₄	A11 ₁₄	A8 ₁₅	A9 ₁₅	A10 ₁₅	A11 ₁₅
	4	A8 ₁₆	A9 ₁₆	A10 ₁₆	A11 ₁₆	A8 ₁₇	A9 ₁₇	A10 ₁₇	A11 ₁₇	A8 ₁₈	A9 ₁₈	A10 ₁₈	A11 ₁₈	A8 ₁₉ A12 ₁₉	A9 ₁₉ A13 ₁₉	A10 ₁₉ A14 ₁₉	A11 ₁₉ A15 ₁₉
	5	A12 ₂₀	A13 ₂₀	A14 ₂₀	A15 ₂₀	A12 ₂₁	A13 ₂₁	A14 ₂₁	A15 ₂₁	A12 ₂₂	A13 ₂₂	A14 ₂₂	A15 ₂₂	A12 ₂₃	A13 ₂₃	A14 ₂₃	A15 ₂₃
index	6	A12 ₂₄	A13 ₂₄	A14 ₂₄	A15 ₂₄	A12 ₂₅ A16 ₂₅	A13 ₂₅ A17 ₂₅	A14 ₂₅ A18 ₂₅	A15 ₂₅ A19 ₂₅	A16 ₂₆	A17 ₂₆	A18 ₂₆	A19 ₂₆	A16 ₂₇	A17 ₂₇	A18 ₂₇	A18 ₂₇
	7	A16 ₂₈	A17 ₂₈	A18 ₂₈	A19 ₂₈	A16 ₂₉	A17 ₂₉	A18 ₂₉	A19 ₂₉	A16 ₃₀	A17 ₃₀	A18 ₃₀	A19 ₃₀	A16 ₃₁	A17 ₃₁	A18 ₃₁	A19 ₃₁
Row	8	P B5 5b 5b	P B5 B5 5b 150b														
	9	B5 B6 B6 2b 8b									B6 50b						
	24	B14 10b	B14 B15 5b 5b														
	25	B15 80b B15 0 B15 0 B15 8b 0 8b 0 8b 0 8b											O Checksum 40b				
	26		Checksum 160b														
	27	Checksum 120b															


Mapping FEC to PMA lanes

- Cycle through FEC 10-bit words through each of the 4 PMA lanes.
 - The FEC frame contains 444 10-bit words
 - For each FEC frame, 111 10-bit words are destined for each of the four PMA lanes.
 - FEC words (i+j*4) go to lane i
 - i is {0,1,2,3}, where i represents the lane #
 - j is {0,1,2,...,110}, j indexes the FEC words destined for each lane
 - Note that for FEC words 408 to 411, only the 8 data bits are transferred to each lane.

PMA Frame

- PMA frame generated for each PMA lane.
- PMA frame is composed of...
 - 5 quarter FEC frames, 5*(4440-8)/4 = 5540 bits
 - 4 overhead bits
 - essential to give a resultant PAM4 symbol rate of 88 * 156.25 MHz
 - various possible applications discussed on subsequent slide
 - 88 PAM4 block termination bits
 - 1 termination bit per 63 data bits
 - 5632 bits total

PMA frame structure (one per lane)

Legend:

"f" = bits from 5 FEC frames

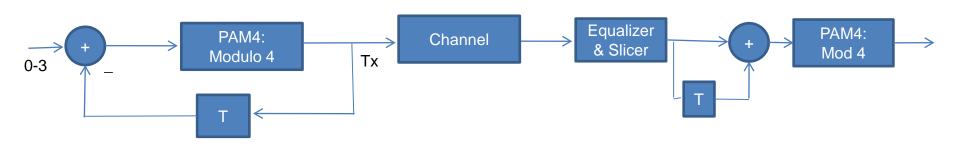
"h" = overhead bits

"b" = block termination bits

Each pair of bits, map to one PAM4 symbol. For the PAM4 block termination symbol, we want "b" and the preceding bit "f" to indicate +1 or -1 so ... For gray mapping, b = 0, always!

if the preceding bit is 1, then 10 maps to +1

if the preceding bit is 0, then 00 maps to -1


termination bits

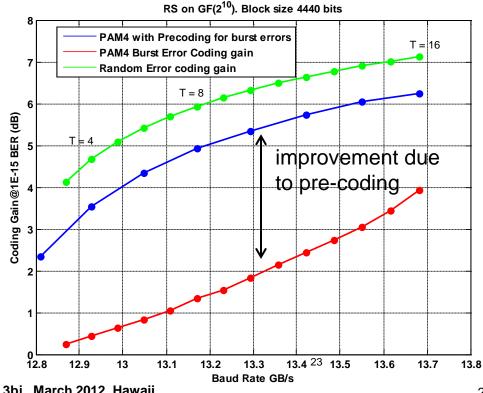
PMA Frame Overhead Bits

- Each PMA per-lane frame has 4 overhead bits.
- Must be randomized or at least "friendly".
- Various applications ...
 - PMA frame alignment (see previous slide)
 - lane identification
 - control channel for remote transmitter control
 - vendor specific use

Pre-Coding

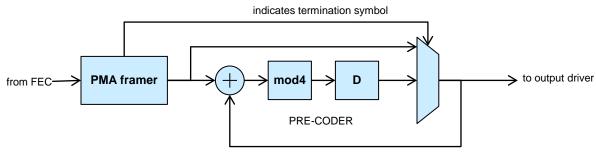
- 1/(1+D) modulus 4 pre-coding
 - See bliss_01_0311, "Signaling Terminology; PAM-M and Partial Response Precoders"
 - Rx uses a (1+D) mod 4 after slicing
- Simple to implement
- Very low Complexity; similar complexity to duo-binary precoder.
- Pre-coding is mandatory; negotiation is not required.

Motivation for pre-coding


- Pre-coding mitigates error propagation in DFE and MLSD receivers.
 - Greatly reduces number of errors per burst.
 - For 1-tap DFE, reduces burst to two errors, one at beginning and one at end

For MLSD see dabiri_01_0911 "Enabling Improved DSP Based Receivers for 100G

Backplane"


Graph shows improved coding gain (blue) due to precoding.

The delta between burst error and random error is ~1.0dB with 1/(1+D) mod 4 precoding

PAM4 Block Termination

- PAM4 block termination symbol every 32 PAM4 symbols
 - For efficiency, each PAM4 termination symbol transmits one data bit.
 - 63 data bits sent every 32 PAM4 symbols
 - Increases baud rate by 64/63.
 - Each PAM4 block termination symbol is mapped to either +1 or -1.
 - At the transmitter, termination added within the precoder.
 - At the detector, termination removed after the detector.
- See dabiri_01_0112.
- PAM4 block termination encoding is mandatory; negotiation is not required.

Functional representation of block termination and pre-coding

Motivation for PAM4 Block Termination

- Block termination by transmitting known PAM4 symbols on a regular cycle enables...
 - efficient and effective MLSD, maximum likelihood sequence detection (dabiri_01_0911)
 - parallel DFE implementations
 - Keshab K. Parhi, Pipelining of parallel multiplexor loop and Decision Feedback Equalizers, ICASSP, 2004

PAM4 encoding

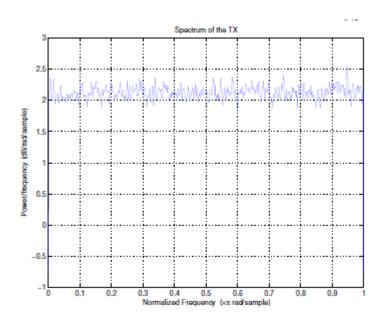
- Gray mapping
 - pre-coder output {10, 11, 01, 00} maps to {+1,+1/3,-1/3,-1}
 - based on 2B1Q coding used in HDSL and ISDN

PMA synchonization

- Lock to PAM4 termination blocks by searching for PAM4 termination symbols
 - PAM4 termination symbols (1 in 32) are always either +1 or -1.
 - Similar to framing on 10 or 01 sequence for 64B/66B, can borrow and modify 64B/66B synchronization state machine.

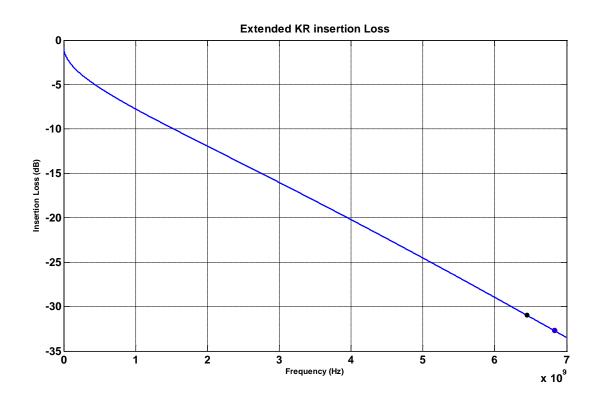
Lock to PMA frame

- Use known content of overhead bits.
 - Once locked to the PAM4 termination blocks, look for 4 bits (2 PAM4 symbols) every 88 rows.
 - Again, similar to 64B/66B synchronization.


Energy Efficient Ethernet Operation

- Fast synchronization for REFRESH and WAKE.
 - Synchronize on PAM4 termination symbols.
 - Use prescribed sequence to accelerate synchronization.
- For REFRESH, PCS and FEC not required.
 - Replace with scrambled sequence.
 - Similar to EEE/LPI for 10GBASE-T.
- For WAKE, rapid alignment markers not required by the PMA/PMD receiver.
 - Will still be required at the PCS RX at the PCS end point.
- No significant impact to work being done in EEE consensus group.
 - Compatible and complementary with PCS state machine in Gustlin_02_1111.

Thanks!


BACKUP SLIDES

Power spectrum with PAM4 block termination symbols

- The simulated spectrum above shows no spectral content due to block termination symbols.
- Pattern is repeating structure (not content) of 32 PAM4 symbols...
 - 31 random PAM4 symbols in {-1,-1/3,+1/3,-1} * 3
 - 1 random PAM4 symbol in {-1, +1} * 3

PAM4 SNR Loss due to Over clocking

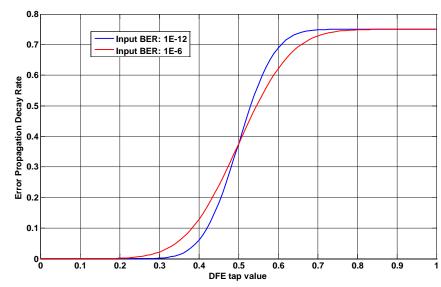
For FEC baud rate of 13.67G, the SNR loss due to over clocking

$$>$$
 SNR_{delta} = (IL_{6.84GHz} - IL_{6.45 GHz})/2 = 0.9dB

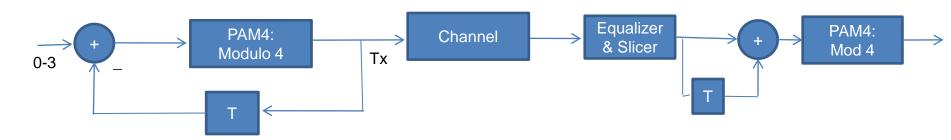
Precoding Motivation: PAM4 DFE bursts

- DFE's are well known to multiply errors in the feedback loop
 - A single error will become a burst error
- Consider PAM4 1-tap DFE with tap coeff = 1
 - If previous decision is wrong, then there is 3/4 probability of making a successive error
 - i.e. Probability of K consecutive errors = (3/4)^k

Lower 1st DFE tap between 0.6 to 1 have similar burst length as tap

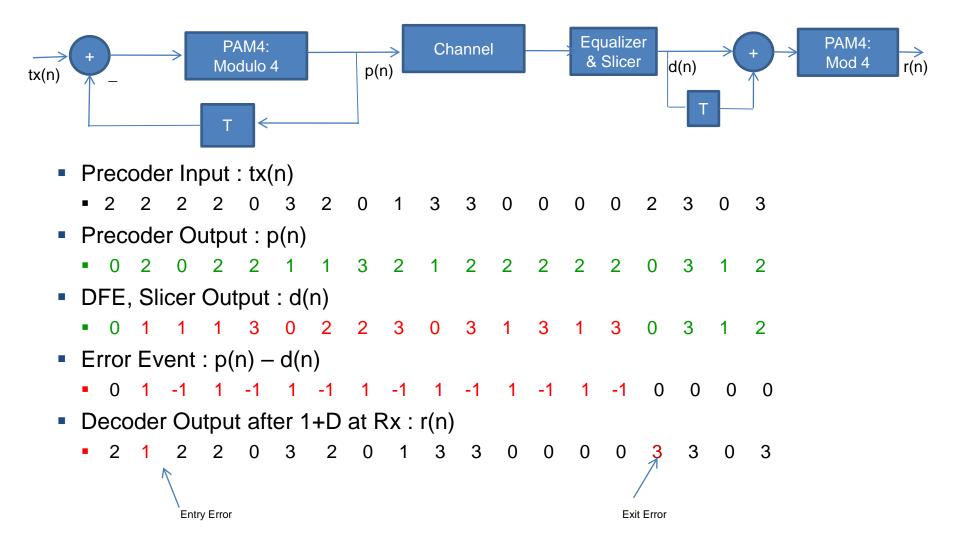

coefficient of 1

■ Tap of 1: 0.75 k


■ Tap of 0.7: 0.72 k

■ Tap of 0.6: 0.62 k

- A single random error may consume multiple Reed Solomon words
 - Burst error coding gain is lower than coding gain for random errors



1/(1+D) Precoding for DFE burst errors

- The burst error length of the DFE error events for PAM4 can be reduced by using precoding
- PAM4 Tx precoding uses a 1/(1+D) mod 4
 - See bliss_01_0311, "Signaling Terminology; PAM-M and Partial Response Precoders"
 - Rx uses a (1+D) mod 4 after slicing
- Simple to implement
- Very low Complexity; similar complexity to duo-binary precoder
- Reduces 1 tap DFE burst error runs into 2 errors per error event
 - One error at the entry, one error at the exit

1/(1+D) Precoding worked example

This example does not include the PAM4 block termination.

Mean Time To False Packet Acceptance (MTTFPA)

- Assume any FEC frame known to be in error is marked.
 - Any 64B/66B blocks within the marked FEC frame are replaced with error blocks.
 - The errored packets are then eventually discarded by the downstream MAC.
 - Only FEC frames without error detected (falsely decoded) may result in falsely accepted packets.
- Probability of a FEC false decode, P_{FFD} (i.e. outputting a false codeword)
 - $P_{FFD} = 1/t!$, where t is the strength of the code
 - The output codeword will generally contain 2t+1 errors
 - Ethernet CRC32 cannot guarantee detection for 2t+1 errors
 - A false CRC32 match is random with probability 2-32
- Probability of false packet acceptance, P_{FPA}
 - $P_{EPA} \sim = P_{EED} * BER_{OBJ} * 2^{-32} * N = 1.1E-35 * N$
 - N = average number of packets affected by each FEC frame, somewhere between 0 and 7
 - BER_{OBJ} = FEC BER objective = 1E-12
- For mandatory PAM4 FEC, RS(444, 412, t = 16)
 - MTTFPA $\sim = 1/P_{\text{FPA}} * 1/(13.75\text{E}9 * 2 * 4) * 1/(60*60*24*365) \text{ years} = 2.6\text{E}16 / \text{N years}$
 - For N = 7, MTTFPA ~= 3.9e15 years
 - Lifetime of universe is ~13E9 years.