Transmitter and Receiver

Architecture Without Self-
Synchronizing Rx Scrambler

IEEE 802.3bj interim meeting
May 17-18, 2012, Minneapolis, MN
Roy Cideciyan - IBM

" A
Introduction

IBM

Tx and Rx architectures for low-latency FEC have been adopted at the March plenary meeting:
gustlin_01_0312.pdf and brown_01a_0312.pdf

High-rate transcoding is performed on non-scrambled data. As data from PCS layer is already
scrambled with a self-synchronizing scrambler, data in current Tx architecture is descrambled
prior to 256b/257b transcoding.

Descrambling in Tx requires the inverse operation at the receiver, i.e., data is scrambled with a
self-synchronizing scrambler at Rx before it is sent to physical coding sublayer (PCS) where it
is descrambled.

Self-synchronizing scramblers in Rx are usually not desirable because of error multiplication.
Although PCS descrambler should regenerate the possibly erroneous sequence at the Rx
scrambler input, it is worthwhile to think whether a low-latency FEC architecture that avoids Rx
scrambler is possible.

A proposal for FEC architecture that avoids self-synchronizing Rx scrambler is shown.

Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler 2

"
Adopted Tx Architecture for NRZ

PCS Ln0 PCS Ln1 PCSLn18 PCSLn19
66b SM 66b SM 66b SM 66b SM
AM SM AM SM ooo AM SM AM SM

Align Function

v

Alignment Removal

¢

Descramble (X38)

v v

Alignment Mapping 256B/257 Transcoding (across lanes)

!

Scrambling (X%8 , across lanes)

!

> Alignment Insertion

v

RS FEC Encoder

¢

Word Distribution

gustlin_01_0312.pdf I

FEC LnO FEC Ln1 FECLn2 FECLnN3

IBM Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler

Adopted Rx Architecture for NRZ

FEC LnO FEC Ln1 FEC Ln2 FEC Ln3

I SR S

Align and Deskew Function

¥

RS FEC Decoder

o

Alignment Removal

-

Descramble (across lanes)

4

<

Alignment Mapping

256B/257B to 64B/66B Transcoding (across lanes)

-

Scramble (across lanes)

-

Alignment Insertion

L

Word Distribution to 20 Lanes

l

PCSLnO

gustlin_01_0312.pdf

oo l

000
PCS Ln1 PCSLn2

IBM Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler

PCS Ln18

1

PCS Ln19

"
Adopted Tx Architecture for PAM4

PCSLO PCSL 1 PCSL 2 PCSL 18 PCSL 19
N \ \ \’ v
B4B/66B SM B4B/668 SM 54B/658 SM 545/560 o1/ PYTy——
AM SM AM SM AM SM Yy Y
/ \ % %
| Align function

v

Alignment markers

Alignment marker removal

‘l’ Blocks other than alignment markers

N De-scramble

Map alignment markers v

64B/66B to 256B/257B transcoding
v

Alignment marker insertion

Y

\:

Scramble

v

FEC encoding RS(444, 412, t = 16)

v

FEC 10-bit word distribution to 4 lanes

\ \Y N 4 4
PMA framer, PMA framer, PMA framer, PMA framer,
precoder and precoder and precoder and precoder and
block termination block termination block termination block termination
PMA lane 0 PMA lane 1 PMA lane 2 PMAlane 3 1375 Gbaud * 4

brown_01a_0312.pdf

IBM Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler 5

" A
Adopted Rx Architecture for PAM4

PCSL1 PCSL 2 PCSL 18 PCSL 19

1 1 1 ! !

| Word distribution to 20 PCS lanes

A

A 4

Alignment marker insertion

1

Scramble

Map alignment markers 0N

\ 256B/257B to 64B/66B transcoding

Al t K * Blocks other than alignment markers
ignment markers

Alignment marker removal

4\

De-scramble

A

FEC decoding RS(444, 412, t = 16)

/P

Align and deskew

/ T

i

T

PAM4 PAM4 PAM4 PAM4
Receiver, Receiver, Receiver, Receiver,
PMA framer PMA framer PMA framer PMA framer
PMA lane 0 PMA lane 1 PMA lane 2 PMA lane 3

brown 01a _0312.pdf

Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler

13.75 Gbaud * 4

Tx Architecture of FEC Sublayer for 10GBASE-R

Clause 74

IBM

64B/66B output
of PCS function

Transcode bit T =|SH.1 XOR S$1.0

Output of Transcoder
function

FEC block

Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler

tx_data-group<0> (PCS) tx_data-group<15> (PCS)

- Reverse Gearbox function

Sync header

M 0 SO 10 ..8.1. g S2 S3 o .3.4. o Sb S6

S7

64B/66B to 65b Transcoder
- Transcode bit T=SH.1 XOR 51.0

5

rrrrrrrJyrirrirrr[rarqgrrrrerrrrryrrrrrrrjrrrirrarrJrirrirnrorrororrrrt
0 S0 7 S1 s2 S3 S4 S5 S6
{ I L T T T A LI T T T T T |
p| FEC (2112, 2080) Encoder
Aggregate 32 65b blocks plus 32b Parity
0 65b Block 0 salo 65b Block 1 sl 7 [0 65b Block 31 sall0 32b Parity 1
- PN-2112 Scrambler "
TrTrrrrrryrrrrrrnr
-

tx_data-group<0> (PMA) x_data-group<15> (PMA)

"
Rx Architecture of FEC Sublayer for 10GBASE-R

tx_data-group<0> (PCS) ix_data-group<15> (PCS)

Sync header
TTT T T T T [T T T 177177 L L LI L LI UL N U L L B B B
64B/66E blocks | ‘ S0 1 ‘ 2 ‘ s3 ‘ s4 ‘ s5 ‘ 6 ‘ s7
to PCS function O vl b b b b L cin s i
SH.O SHA1
= Reconstruct 65b to 64B/66B blocks
N Y 00 T O O D

Descrambled Transcode bit T

- Descramble Transcode bit
T = Received Transcode bit XOR $1.0

rrrrrrr[yrirrrrrrJrrrqgrrrJrrrrrrryrrrrrrr[rrerrrror[rrrrror[rrrorrrrtr
65b Blocks : ‘0 S0 S1 ‘ S2 ‘ 83 ‘ 54 ‘ S5 ‘ S6 ‘ s7
Received Transcode bit 510
i | FEC (2112, 2080) Decoder
and Error correction (32 65b Blocks)
FEC block -—{0 65bBlock0 |, 65b Block 1 64‘—— ‘D 650 Block 31 ||, 320 Parity 4,

PN-2112 Descrambler and
—®={ FEC block Sync

Clause 74 s

tx_data-group<0> (PMA) tx_data-group<15> (PMA)

IBM Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler

" SN
64b/66b Coding in 100GBASE-R

m 64b/66b coding used in 100GBASE-R (IEEE 802.3ba-2010, Clause 82)
- 1 type of data block (DB) with 2-bit header 01

- 11 types of control blocks (CB) with 2-bit header 10 where the first byte of the payload is rate-4/8
encoded (Hamming distance=4) 8-bit block type field indicating the type of control block format

Input Data 3 Block Payload
n
[+
Bit Position:| 0 1| 2 85
[Data Block Format
DB DoD, D02 0.D:0:0:] | D, | D, | D, | D, | D | D; | D,
Control Block Formats: Block Type
[1 CpCqCa03 CsCsCaCr | 10 | | DxIE [| (& | [| C Cs | Cs | Cs s
2 5pDyD;D: D400 D; | 10 | | Dx7E D, 0y Oy Oy | D | D | 0,
3 00,00, 2, 2. 2. Z, |10 | | 0xaB D, Oz Dy Og 0x000_0000
4 TaCqCaCsCaCsCalr | 10 | | 087 | | || || | C. c Cy C, Ce Cs c;
5 DTy GG Ca 0 GGy | 10) | D2 Dy | | | | | Cz c C, Cs G Cr
CB < 6 DDy TG CaCa BBy |10 || DmAA Dyq oy | | | | Ca C, Cs = &
7 D D,D;T,C,C,C,C, [10 | | oxB# Dq D, D, ||| Ca Cs Ce c;
8 DyD;D; D53 T2 CCe C; | 10 | | 0xCC Dy D. D: Ds | | Cs Cs c
9 D, 0,00, D, T, C;C; | 10 | | mxD2 Dy O, Dy Dy Dy Cg G
10 Dy0,0, 0, D, D T Gy [10 | | 0uEd Dy o, o, D, D, D: G
| DyDyD02D3 Dy D D5 T7 | 10 /nvxi Dy D, D, D, o, D, D,

BTF / Figure 82-5—64B/66B block formats Cideciyan_a 13_03 12pdf

IBM Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler 9

"
Block Type Field

m According to clause 82.2.3.1 the LSB of the block type field (BTF) represented as a
hexadecimal value is the first transmitted bit. For example, the block type field Ox1E is
sent from left to right as 01111000.

m BTFj(8)=BTFj<7:0> where BTFj<0> is the first transmitted bit. We represent BTFj(8) as
the concatenation of the first nibble Fj(4)=BTFj<3:0> and the second nibble
Sj(4)=BTFj<7:4>. For example, for BTFj(8)=0x1E, we obtain Fj(4)=0xE sent from left to
right as 0111 and Sj(4)=0x1 sent from left to right as 1000.

BTFj(8)

1 Ox1E CBij(56)
Fj(4) Sj(4) or

10 | OxE | Ox1 CB;j(56)
Fj(4) Sj(4) or

10 |0111{1000 CBj(56)

cideciyan _01a_0312.pdf

IBM Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler

"
Two Examples of 256b/257b Transcoding

|

|

Case 8: CB #1, DB #2, DB #3 and DB #4

1

F1(4)

S1(4)| CB1(56) |01

DB2(64)

01

DB3(64)

01

DB4(64)

ITC ™.
at Rx

Case 9: DB #1, CB #2, CB #3 and CB #4

STC
. at Tx

0|0111|F1(4)

CB1(56)

DB2(64)

DB3(64)

DB4(64)

TC: Transcoding
ITC: Inverse Transcoding

01 DB1(64) 10|F2(4)|S2(4)| CB2(56) [10|F3(4)|S3(4)| CB3(56) [10|F4(4)|S4(4) CB4(56)
TC ; \ TC
at Rx \ ; " at Tx
0|1 DB1(64) F2(4) CB2(56) |F3(4)|S3(4) CB3(56) |F4(4)|S4(4)| CB4(56)

cideciyan 01a_0312.pdf

IBM

Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler

11

|

|

" A
TC and ITC of Scrambled Data

IBM

Transcoding (TC) operation of scrambled 66b blocks from PCS sublayer can be performed exactly
the same way as TC of descrambled 66b blocks by performing the same operations described in
cideciyan_01a_0312.pdf, e.g., deleting the scrambled second 4-bit nibble in the first scrambled byte
of the first scrambled control block in a transcoded block that contains at least one control block.
Note that two header bits of 66b blocks from PCS are not scrambled; only the 64-bit payload is
scrambled.

Inverse transcoding (ITC) of descrambled data according to cideciyan 01a 0312.pdf regenerates
second nibble of block type field, which has been deleted during TC, by using a one-to-one
mapping between first nibbles (1st) and second nibbles (2"d) of BTF. This is only possible because
BTF is a codeword from (8,4) Hamming code with Hamming distance 4.

One-to-one mapping between 1st and 2" nibbles of BTFs in hexadecimal notation

1st 1 0 1 2 N 4 e 7 | 89 T ATB|TC NP E|F
29/ 0 | E | D| 3 B |5 [6 |87]9 A [(4]|]C]|2 1 F

ITC of scrambled data requires a descrambler running in parallel

Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler 12

" A
Descrambler-Aided ITC of Scrambled Data

Scrambled Data Input

SO

Y

SI [l S2 [af(al 838)5 $39 | (¢l S56 | o 857_‘
D -

Descrambler defined in clause 49.2.10

Serial Data Qutput

Figure 49—-10—Descrambler

Scrambled data with missing Scrambled data with restored
2nd nibbles of shrunk BTFs() 2nd nibbles of shrunk BTFs

) I

Generate missing

Descrambler
scrambled 2M nibble

A

A 4

Extract descrambled - Generate descrambled
1st nibble of shrunk BTF One-to-one mapping between 2nd nibble of shrunk BTF
1st and 2" nibbles of BTF

(): Shrunk BTF (4 bit) is a block type field whose second nibble was deleted during transcoding

IBM Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler 13

Alternative Tx Architecture for NRZ

PCS Ln0 PCS Ln1 PCSLn18 PCSLn19
66b SM 66b SM 66b SM 66b SM
AM SM AM SM ooo AM SM AM SM

Align Function

v

Alignment Removal

v v
Alignment Mapping 256B/257 Transcoding (across lanes)
XOR first 5 header bits in 257-bit transcoded
block with data bits 8,9, 10, 11 and 12 before [""" ~"~"~"~"~"~"~"~"="=""=777°77 g
alignment insertion (similar to 10GBASE-KR FEC) _ F
> Alignment Insertion
RS FEC encoded blocks are scrambled with a PN-5280 RS FEcl'Encoder
additive synchronous scrambler generating PN sequencesof | = — 4'
length 5280 using generator in Figure 74-5. Before each B
FEC block is encoded the PN-5280 generator is initialized
with initial state S57 = 1, Si—1 = Si XOR 1 or simply the i l l l
binary sequence of 101010 (clause 74.7.4.4.1) FECLn0 FECLn FECLn2 FECLn3

IBM Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler 14

Alternative Rx Architecture for NRZ

Received RS FEC blocks are scrambled with a
PN-5280 additive synchronous scrambler
generating PN sequences of length 5280 using FEC LnO FEC Ln1 FECLnz FECLn3
generator in Figure 74-5. Before each FEC block l l l l

is decoded the PN-5280 generator is initialized
with initial state S57 = 1, Si—1 = Si XOR 1 or
simply the binary sequence of 101010 [> l’

Align and Deskew Function

RS FEC Decoder

]

Alignment Removal

\ 4

256B/257B to 64B/66B Transcoding (across lanes)

\ 4
Alignment Mapping

\ 4

g Alignment Insertion

¥

Word Distribution to 20 Lanes

XOR first 5 header bits in 257-bit transcoded block
with data bits 8, 9, 10, 11 and 12 before inverse
transcoding (similar to 10GBASE-KR FEC) l l l l l

Qoo
PCS LnO PCS Lni PCS Ln2 PCSLni8 PCSLn19

IBM Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler 15

" A
Alternative Tx Architecture for PAM4

XOR first 5 header bits in 257-bit
transcoded block with data bits 8, 9, 10,
11 and 12 before alignment marker
insertion (similar to 10GBASE-KR FEC)

\

\
Alignment markers |

\

N/
Map alignment markers

\
\
\
\
\
\

~

RS FEC encoded blocks are scrambled
with a PN-4440 additive synchronous
scrambler generating PN sequences of
length 4440 using generator in Figure 74-
5. Before each FEC block is encoded the
PN-4440 generator is initialized with initial
state S57 = 1, Si—1 = Si XOR 1 or simply
the binary sequence of 101010 (clause
74.7.4.4.1)

IBM

PCSLO PCSL 1 PCSL 2 PCSL 18 PCSL 19
i N N \ v
64B/66B SM 64B/66B SM 64B/66B SM 64B/66B SM 64B/66B SM
AM SM AM SM AM SM AM SM AM SM
/ /
| Align function |
Alignment marker removal
v
64B/66B to 256B/257B transcoding
——————————————————— >\
Alignment marker insertion
A 4
FEC encoding RS(444, 412, t = 16)
——————————————————— >\
FEC 10-bit word distribution to 4 lanes
4 \ 4 \ 4 \ 4
PMA framer, PMA framer, PMA framer, PMA framer,
precoder and precoder and precoder and precoder and
block termination block termination block termination block termination
PMA lane 0 PMA lane 1 PMA lane 2 PMA lane 3

Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler

13.75 Gbaud * 4

16

" A
Alternative Rx Architecture for PAM4

XOR first 5 header bits in 257-bit

transcoded block with data bits 8, 9, 10, | "°*° Fest rest PesLTe PesL1e
11 and 12 before inverse transcoding T T T T T
(similar to 10GBASE-KR FEC) | Word distribution to 20 PCS lanes
A
\\ > Alignment marker insertion

\ A

Map alignment markers
\ \ 256B/257B to 64B/66B transcoding

——————————————————— > * Blocks other than alignment markers

Alignment marker removal
a

Alignment markers

FEC decoding RS(444, 412, t = 16)

el > 4

1 Align and deskew

: / T T T
Received RS FEC blocks are scrambled with a PAM4 PAMA4 PAMA4 PAM4
PN-4440 additive synchronous scrambler procever || e || e || e,
generating PN sequences of length 4440 using
generator in Figure 74-5. Before each FEC block T T /'\ T 1375 Gbaud * 4
is decoded the PN-4440 generator is initialized FMA lane 0 PMA lane 1 PMA lane 2 PMA lane 3
with initial state S57 =1, Si-1 = Si XOR 1 or
simply the binary sequence of 101010

IBM Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler 17

" A
Final Remarks

IBM

In current adopted Tx and Rx architectures, if PCS and TC/FEC sublayer are
implemented in one layer, scrambling and descrambling operation prior to transcoding
at Tx and Rx could be merged, i.e., deleted. This would avoid self-synchronizing Rx
scrambler and requires less implementation complexity than proposed alternative Tx
and Rx architecture.

Proposed Rx architecture requires a descrambler running in parallel and aiding inverse
transcoding operaton. This requires slight increase in implementation complexity.

One could replace post-FEC synchronous (additive) scrambler by pre-FEC self-
synchronizing (multiplicative) scrambler.

If desired, alignment markers can be prevented from being scrambled by pseudo-noise
(PN) generator PN-5280 (NRZ) or PN-4440 (PAM4).

Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler 18

IBM

Thank You

Transmitter and Receiver Architecture Without Self-Synchronizing Rx Scrambler

19

