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" A
Introduction

IBM

Tx and Rx architectures for low-latency FEC have been adopted at the March plenary meeting:
gustlin_01_0312.pdf and brown_01a_0312.pdf

High-rate transcoding is performed on non-scrambled data. As data from PCS layer is already
scrambled with a self-synchronizing scrambler, data in current Tx architecture is descrambled
prior to 256b/257b transcoding.

Descrambling in Tx requires the inverse operation at the receiver, i.e., data is scrambled with a
self-synchronizing scrambler at Rx before it is sent to physical coding sublayer (PCS) where it
is descrambled.

Self-synchronizing scramblers in Rx are usually not desirable because of error multiplication.
Although PCS descrambler should regenerate the possibly erroneous sequence at the Rx
scrambler input, it is worthwhile to think whether a low-latency FEC architecture that avoids Rx
scrambler is possible.

A proposal for FEC architecture that avoids self-synchronizing Rx scrambler is shown.
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Adopted Tx Architecture for NRZ
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Adopted Rx Architecture for NRZ
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Adopted Tx Architecture for PAM4
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" A
Adopted Rx Architecture for PAM4
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Tx Architecture of FEC Sublayer for 10GBASE-R

Clause 74

IBM

64B/66B output
of PCS function

Transcode bit T =|SH.1 XOR S$1.0

Output of Transcoder
function

FEC block
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Rx Architecture of FEC Sublayer for 10GBASE-R
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" SN
64b/66b Coding in 100GBASE-R

m 64b/66b coding used in 100GBASE-R (IEEE 802.3ba-2010, Clause 82)
- 1 type of data block (DB) with 2-bit header 01

- 11 types of control blocks (CB) with 2-bit header 10 where the first byte of the payload is rate-4/8
encoded (Hamming distance=4) 8-bit block type field indicating the type of control block format

Input Data 3 Block Payload
n
[+
Bit Position:| 0 1| 2 85
[Data Block Format
DB DoD, D02 0.D:0:0:] | D, | D, | D, | D, | D | D; | D,
Control Block Formats: Block Type
[ 1 CpCqCa03 CsCsCaCr | 10 | | DxIE [ | (& | [ | C Cs | Cs | Cs s
2 5pDyD;D: D400 D; | 10 | | Dx7E D, 0y Oy Oy | D | D | 0,
3 00,00, 2, 2. 2. Z, |10 | | 0xaB D, Oz Dy Og 0x000_0000
4 TaCqCaCsCaCsCalr | 10 | | 087 | | || || | C. c Cy C, Ce Cs c;
5 DTy GG Ca 0 GGy | 10 ) | D2 Dy | | | | | Cz c C, Cs G Cr
CB < 6 DDy TG CaCa BBy |10 || DmAA Dyq oy | | | | Ca C, Cs = &
7 D D,D;T,C,C,C,C, [ 10 | | oxB# Dq D, D, ||| Ca Cs Ce c;
8 DyD;D; D53 T2 CCe C; | 10 | | 0xCC Dy D. D: Ds | | Cs Cs c
9 D, 0,00, D, T, C;C; | 10 | | mxD2 Dy O, Dy Dy Dy Cg G
10 Dy0,0, 0, D, D T Gy [ 10 | | 0uEd Dy o, o, D, D, D: G
| DyDyD02D3 Dy D D5 T7 | 10 /nvxi Dy D, D, D, o, D, D,

BTF / Figure 82-5—64B/66B block formats Cideciyan_a 13_03 12pdf
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"
Block Type Field

m  According to clause 82.2.3.1 the LSB of the block type field (BTF) represented as a
hexadecimal value is the first transmitted bit. For example, the block type field Ox1E is
sent from left to right as 01111000.

m BTFj(8)=BTFj<7:0> where BTFj<0> is the first transmitted bit. We represent BTFj(8) as
the concatenation of the first nibble Fj(4)=BTFj<3:0> and the second nibble
Sj(4)=BTFj<7:4>. For example, for BTFj(8)=0x1E, we obtain Fj(4)=0xE sent from left to
right as 0111 and Sj(4)=0x1 sent from left to right as 1000.

BTFj(8)

1 Ox1E CBij(56)
Fj(4) Sj(4) or

10 | OxE | Ox1 CB;j(56)
Fj(4) Sj(4) or

10 |0111{1000 CBj(56)

cideciyan _01a_0312.pdf
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Two Examples of 256b/257b Transcoding
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cideciyan 01a_0312.pdf
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" A
TC and ITC of Scrambled Data

IBM

Transcoding (TC) operation of scrambled 66b blocks from PCS sublayer can be performed exactly
the same way as TC of descrambled 66b blocks by performing the same operations described in
cideciyan_01a_0312.pdf, e.g., deleting the scrambled second 4-bit nibble in the first scrambled byte
of the first scrambled control block in a transcoded block that contains at least one control block.
Note that two header bits of 66b blocks from PCS are not scrambled; only the 64-bit payload is
scrambled.

Inverse transcoding (ITC) of descrambled data according to cideciyan 01a 0312.pdf regenerates
second nibble of block type field, which has been deleted during TC, by using a one-to-one
mapping between first nibbles (1st) and second nibbles (2"d) of BTF. This is only possible because
BTF is a codeword from (8,4) Hamming code with Hamming distance 4.

One-to-one mapping between 1st and 2" nibbles of BTFs in hexadecimal notation

1st 1 0 1 2 N 4 e 7 | 89 T ATB|TC NP E|F
29/ 0 | E | D| 3 B |5 [6 |87 ]9 A [(4]|]C]|2 1 F

ITC of scrambled data requires a descrambler running in parallel
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" A
Descrambler-Aided ITC of Scrambled Data
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Alternative Tx Architecture for NRZ
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Alternative Rx Architecture for NRZ

Received RS FEC blocks are scrambled with a
PN-5280 additive synchronous scrambler
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" A
Alternative Tx Architecture for PAM4
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" A
Alternative Rx Architecture for PAM4
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" A
Final Remarks

IBM

In current adopted Tx and Rx architectures, if PCS and TC/FEC sublayer are
implemented in one layer, scrambling and descrambling operation prior to transcoding
at Tx and Rx could be merged, i.e., deleted. This would avoid self-synchronizing Rx
scrambler and requires less implementation complexity than proposed alternative Tx
and Rx architecture.

Proposed Rx architecture requires a descrambler running in parallel and aiding inverse
transcoding operaton. This requires slight increase in implementation complexity.

One could replace post-FEC synchronous (additive) scrambler by pre-FEC self-
synchronizing (multiplicative) scrambler.

If desired, alignment markers can be prevented from being scrambled by pseudo-noise
(PN) generator PN-5280 (NRZ) or PN-4440 (PAM4).
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Thank You
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