

Low-Frequency Effects of AC Coupling Capacitor

IEEE P802.3bj May 2012, Minneapolis

Yasuo Hidaka (Fujitsu Laboratories of America, Inc.)

Contributor

■ Mike Dudek (QLogic)

Summary

- AC cap has low-frequency effects of baseline wonder that cannot be represented well by channel S-parameter.
- If channel includes AC cap, AC cap should be shorted (either physically or virtually) in channel S-parameter model, and an equivalent lumped cap should be placed outside of channel in time-domain simulation.

Low-frequency effect of AC cap

- High-pass characteristics with cut-off freq at kHz order
 - E.g. 100nF cap in 50ohm transmission line: -3dB cut-off freq = 15.9kHz

A problem of AC cap in Channel

- Channel characteristics are often represented by S-parameter up to 40GHz with 10MHz frequency step
- To include the low-frequency effect of AC cap, frequency step must be 100 Hz ~ 1KHz at low frequency
 - Because the attenuation curve in low frequency must be captured
 - Otherwise, it is not possible to reproduce the effect of baseline wonder
 - Besides, discontinuity at low-frequency in S-parameter model often results in causality problem in time-domain simulation
- Channel S-parameter file grows by a factor of 10,000~100,000, exceeding practical limits of many tools
 - Some tool may support variable frequency steps, but most tools do not

A workaround for Simulated Channel

- Short AC cap to avoid discontinuity in low frequency in channel
 - Restrict impedance discontinuities in channel only at high frequency
 - E.g. VIA and SMT footprint
- Put an equivalent lumped capacitor outside of channel
 - Not in channel S parameter, but only in time-domain simulation

Actual System vs Equivalent Model

- At High-frequency (> MHz order)
 - Almost no difference in either S21 or S11/S22 characteristics
 - Cap is almost zero (-0j) ohm at high frequency.
- At Low frequency (at kHz order)
 - Almost no difference on S21 characteristics
 - Lumped cap after channel reproduces almost same effect of baseline wonder.
 - Negligible difference in *phase* of S11/S22 characteristics
 - Distance and delay from Tx/Rx to capacitor are significantly changed.
 - However, phase difference is negligible, because distance is much shorter than wave length at this low frequency.
 - E.g. The wave length of 1kHz in material with Dk=4 is 150km.

Workarounds for Measured Channel (1/2)

- Option 1 (same scheme as simulated channel)
 - Short AC cap physically by replacing it with 0 ohm resistor of the same form factor
 - Put an equivalent lumped cap outside of channel in time-domain simulation
 - Problems:
 - Replacing AC cap with 0 ohm may largely affect high-frequency channel characteristics
 - DC value is measured approximately at the lowest frequency supported by VNA that is such as 70kHz or 300kHz

Workarounds for Measured Channel (2/2)

- Option 2 (measure with real AC cap)
 - Measure channel with AC cap only at high frequency (> MHz)
 - Do NOT measure at DC (or low-frequency at kHz order), because it is useless
 - Calculate DC value from measured high frequency values
 - Assuming that AC cap is virtually shorted
 - Put an equivalent lumped cap outside of channel in time-domain simulation
 - Problems:
 - DC value must be calculated, but there is no standard method
 - If calculation is not appropriate, it may result in issues such as causality
 - It is not clear who calculates DC values for channel models contributed to TF
 - Each user?
 It may cause inconsistent results between users
 - Contributor? It may be best if possible, but it causes extra burden on contributor
 - Someone else? Who? (I may volunteer to share some values, if there is demand)

Recommendation

- If channel includes AC cap
 - Short AC cap in channel S-parameter model
 - Simulated channel:
 - Short AC cap with ideal conductor
 - Measured channel:
 - Short AC cap physically by replacing AC cap with 0 ohm resistor, and measure DC value approximately at the lowest possible frequency or
 - Calculate DC value from high-frequency values measured with AC cap assuming AC cap is virtually shorted (no measurement at DC or low frequency)
 - Put an equivalent lumped cap outside of channel in time-domain simulation