

Mike Li, Hsinho Wu, Masashi Shimanouchi

Motivations and Methods

Motivation

 To study and understand the variation and range for different methods for S-parameter to SBR transformation

Methods

- Using a range 25 G S-parameters of BPs and CCs published on 8023.bj web site (http://www.ieee802.org/3/100GCU/public/channel.html)
- Calculate the SBR with several known/common methods
- Study and quantify the variations

S-Parameter to SBR Post-Processing Methods

ID	Method Name	Description
1	Rational Fitting	Approximate insertion loss using rational function [1]
2	Iterative Minimum Phase	 Extrapolate to find DC value if it is missing Approximate and adjust phase using iterative techniques for minimum phase reconstruction from magnitude data [2]
3	DC Fix Only	•Extrapolate to find DC value if it is missing
4	Hilbert Minimum Phase	 Extrapolate to find DC value if it is missing Approximate phase using Hilbert transformation from magnitude data [3]

S-Parameter Post-Processing Objectives and Techniques

- DC Value Missing Mitigation
 - Extrapolation (e.g. linear, spline, rational fitting, ... etc.)
- Causality Violation Fixing
 - Minimum-Phase Methods (Iterative and Hilbert)
 - Rational Fitting
- Passivity Violation Fixing
 - Enforcing no-gain
 - Not covered in this study

Five 25 G BP&CC S-Parameters Are Studied

Channel	Fmin	Fmax	Fstep
TEC_Whisper42p8in_Nelco6_THRU_C8C9	0 MHz	40 GHz	10 MHz
TEC_Whisper42p8in_Meg6_THRU_C8C9	0 MHz	40 GHz	10 MHz
FCI_CC_40in_Through	50 MHz	30GHz	50 MHz
Qlogic IL_ET1_ET2.s4p	0 MHz	40 GHz	40 MHz
Molex 5M Cable P2TX1.s4p	50 MHz	40 GHz	10 MHz

SBRs For 5 Channels with 4 Known/Common Methods

Ch3: FCI_CC_40in_Through.s4p

Ch1: TEC_Whisper42p8in_Nelco6_THRU_C8C9.s4p

Channel Impulse Response: IL ET1 ET2

Rational Fit

DC Fix Only

---- Hilbert MinPhase

25

Iter MinPhase

Ch2:
TEC_Whisper42p8in_Meg6_THRU_C8C9.s4p

Time (UI)

Ch4: Qlogic IL_ET1_ET2.s4p

20

Ch5: Molex P2TX1.s4p

200

150

S-parameter to SBR Flow Example

Ch1: TEC_Whisper42p8in_Nelco6_THRU_C8C9.s4p

Single Bit Response

[-3 mv 1.5 mv]

Channel	Fmin	Fmax	Fstep
TEC_Whisper42p8in_Nelco6_THRU_C8C9	0 MHz	40 GHz	10 MHz

Ch1a:

TEC_Whisper42p8in_Nelco6_THRU_C8C9_No_DC.s4p

Single Bit Response

Channel	Fmin	Fmax	Fstep
TEC_Whisper42p8in_Nelco6_THRU_C8C9_No_ DC	10 MHz	40 GHz	10 MHz

Ch2: TEC_Whisper42p8in_Meg6_THRU_C8C9.s4p

Single Bit Response

Channel Impulse Response: TEC Whisper42p8in Meg6 THRU C8C9 Rational Fit lter MinPhase DC Fix Only ----- Hilbert MinPhase 150 50 0 5 10 15 20 25 Time (UI)

[-5.2 mv 3.0 mv]

Channel	Fmin	Fmax	Fstep
TEC_Whisper42p8in_Meg6_THRU_C8C9	0 MHz	40 GHz	10 MHz

Ch3: FCI_CC_40in_Through.s4p

Single Bit Response

SBR Comparison (Base=Iter. Min. Phase)

[-28 mv 47 mv]

Observations

- Rational Fitting failed to converge
- All but Hilbert minimum phase appears to have causality issue
- Hilbert Minimum-Phase method appears to have smaller peak amplitude than DC Fix Only and Iterative Minimum Phase methods.

	Channel	Fmin	Fmax	Fstep
2 Al	FCI_CC_40in_Through	50 MHz	30GHz	50 MHz

Ch4: Qlogic IL_ET1_ET2.s4p

Single Bit Response

[-3.2 mv 4.5 mv]

Channel	Fmin	Fmax	Fstep
Qlogic IL_ET1_ET2.s4p	0 MHz	40 GHz	40 MHz

Ch5: Molex 5M Cable P2TX1.s4p

Single Bit Response

Single Bit Response (After DC Phase Fix)

All methods but Hilbert method failed to generate proper SBR. Possible causes may be:

- DC extrapolation resulted in negative amplitude due to (incorrect?) DC phase offset.
- Long propagation delay (22ns, 5M cable)?
- Assumption for the port assignment? ((1,3)<->(2,4))

- •By applying additional adjustment (e.g. remove DC phase offset), DC Fix only method works.
- •Rational Fitting and Iterative Minimum Phase methods still failed to converge as they might need additional adjustments.

	Channel	Fmin	Fmax	Fstep	
2012	Molex 5M Cable P2TX1.s4p	50 MHz	40 GHz	10 MHz	\triangle

Ch5a: Molex 5M Cable P2TX1_a.s4p

Single Bit Response (w New Port Assignment)

By assuming another port assignment ((1,3)<->(4,2)), all but rational fitting method work

Channel	Fmin	Fmax	Fstep
Molex 5M Cable P2TX1_a.s4p	50 MHz	40 GHz	10 MHz

Results Summary

CH id / Method	1: Rational Fitting	2: Iter. Min. Phase	3: DC Fix Only	4: Hilbert Min. Phase
Ch 1: TEC_Whisper42p8in_Nel co6_THRU_C8C9	ОК	ОК	ОК	ОК
Ch 2: TEC_Whisper42p8in_Meg 6_THRU_C8C9	ОК	ОК	ОК	ОК
Ch 3: FCI_CC_40in_Through	Failed	ОК	Marginal	Marginal
Ch 4: Qlogic IL_ET1_ET2.s4p	ОК	ОК	ок	ОК
Ch 5: Molex 5M Cable P2TX1.s4p	Failed	OK (w/ diff port assignment)	OK (w/ diff port assignment)	ОК

OK: Indicate a visually reasonable SBR is generated.

Summary and Conclusion Remarks

- The quality of SBR critically depends on the original Sparameter data quality/configurations
 - Fmin (DC), Fstep, Fmax
 - Meaning of DC values, including both magnitude and phase
- Small SBR difference (e.g., [-3mv 1.5 mv]), large SBR difference (e.g., [-28 mv 47 mv]) are observed for 4 BPs, with 4 known/common S-parameter to SBR transformation methods
- CC S-parameters can be challenging for certain method
 - Rational-fitting method needs further improvement to work with CC due to long-propagation delay/phase wrapping
 - A large difference (e.g., [-13 mv 8 mv]) is observed for 1 CC, with 3 known/common/"working" S-parameter to SBR transformation methods

References

- [1] "Modified Rational Function Modeling Technique for High Speed Circuits," R. Zeng and J. Sinsky, *IEEE MTT-S Int. Microwave Symp. Dig.*, San Francisco, CA, June 11–16, 2006
- [2] "Iterative Techniques for Minimum Phase Signal Reconstruction from Phase or Magnitude", T. Quatieri and A. Oppenheim, *IEEE Trans. On Acoustics, Speech, and Signal Processing*, 1981
- [3] "Discrete-Time Signal Processing (3rd Edition)", A. Oppenheim and R. Schafer", *Prentice Hall*, 2009

