IBM Research

Line Signaling Performance Comparison on 1m Improved FR4 Channel

Troy Beukema Pravin Patel Mounir Meghelli

Contributors/Supporters

Chris Cole, Finisar

Tom Palkert, Xilinx, Luxtra, Molex

Mike Dudek, Qlogic

Karl Muth (TI)

Scott Kipp, Brocade

Jitendra Mohan (TI)

Mike Li, Altera

- Barry Barnett, IBM
- Myles Kimmitt, Emulex
- David Stauffer, IBM
- Peerouz Amleshi, Molex
- John Ewen, IBM

Objectives

- 1) Compare performance of NRZ and PAM4 with FEC over a representative 1m improved FR4 channel
- 2) Conclude the optimum line signaling/minimum FEC needed to achieve the 4x25=100GbE over such a channel
- 3) Present a simplified comparison of NRZ and PAM4 signaling

Simulated Channel Construction

	Option	Backplane	Switch	
Length	10"	20"	10"	
Board Thickness (mils)	96	220	120	
Trace Widths (mils)	7.5mil	7.5mil	7.5mil	
# of Layers	12	26	14	

All Printed Circuit Boards:

•Signal Layer: 1/2 oz copper

•Stripline: Yes

•Material: 802.3ap Improved FR4

Dk: 3.6@ 1Ghz and Df: 0.0092 @ 1Ghz

Via stub: ~ 15mil
 Differential Impedance: 100 Ohm
 Connector: Impact Plus

Tools:

- •Ansoft Q3D for Tline models
- Ansoft HFSS for Via model
- Ansoft Designer to combine models
- Djordjevic-Sarkar Model for Frequency dependent loss

1m Improved FR4 Channel Response

BitRate/2 BGA-BGA loss 38.2dB 6 FEXT Aggressors BitRate/2 S/Xt 15.9dB

1m FR4 Channel Loss Eye Diagrams, RS T=5 m=9

BAUD/2 LOSS (CHAN/E2E) ²	38/46dB	
HEYEPP(1E-15)	7.7%	
VEYE(1E-15)	7.5mV	
BAUD/2 LOSS RS(352,342) ¹	38/46dB	
HEYEPP(1E-15) RS(352,342) ¹	28.3%	
VEYE(1E-15) RS(352,342) ¹	26.7mV	

¹DFE1 h1=0.65 Error Propagation ²25.8Gbaud/s

BAUD/2 LOSS (CHAN/E2E)4	21/25dB
HEYEPP(1E-15)	0%
VEYE(1E-15)	0mV
BAUD/2 LOSS RS(352,342) ³	21/25dB
HEYEPP(1E-15) RS(352,342) ³	7.2%
VEYE(1E-15) RS(352,342) ³	8.3mV

³No DFE Error Propagation ⁴12.9Gbaud/s

1m FR4 Channel Loss Eye Diagrams, RS T=10 m=9

¹DFE1 h1=0.65 Error Propagation ²27.2Gbaud/s

VEYE(1E-15) RS(248,228)1

³No DFE Error Propagation ⁴13.6Gbaud/s

VEYE(1E-15) RS(248,228)3

11.3%

12.8mV

23.1mV

NRZ HEYE/VEYE vs. Channel Loss, 512b/513b Transcode

¹low PUL loss backplane and card laminates (see References 1)

PAM4 HEYE/VEYE vs. Channel Loss, 512b/513b Transcode

Dominant Sources of PAM4 Eye Degradation

- 1) **Residual ISI** (after FFE/DFE) pushes signal near or over Error Threshold even without added non-deterministic noise
 - → Practical equalizers cannot eliminate residual ISI due to equalizer complexity limits
 - → This degradation may not be considered by "simplified" SNR analysis which assumes ISI can be cancelled
- 2) Sample clock is not constantly at eye center, but is jittered back and forth a significant fraction of the eye by Gaussian noise. **Sample Clock Jitter** closes both the HEYE (bathtub curve) and VEYE (vertical offset margin)
 - → This degradation may not be considered by "simplified" SNR based analyses which do not incorporate sample clock jitter
- 3) Horizontal eye of PAM4 is severely degraded by **multiple edge transitions** with dV/dT ~1/3 of NRZ, increasing AM-PM degradation (i.e. ampltiude ISI/Noise is translated to horizontal eye closure with 3x more voltage/time gain)
- 4) The **Peak/Error threshold ratio** in PAM4 is 3x that of NRZ, increasing degradation from crosstalk and residual ISI by a peak factor of 3 (9.5dB) compared to NRZ (see next slide).

Why is NRZ so much better performing than PAM4?

→CROSSTALK AND ISI DEGRADATION PEAK 3X (9.5dB)
BIGGER EFFECT WITH PAM4 RESULTS IN LARGE
RELATIVE HEYE/VEYE PERFORMANCE LOSS
WITH PAM4 vs. NRZ (probability of PAM4 peak symbol=50%)

When is higher density signaling beneficial?

Chan Identifier	Trace Length	Loss 6.5GHz	Loss 12.9GHz dB	
30 dB STUB	30"	20.6dB	49dB	

CHANNEL MODEL

Extreme channel loss in range of BAUD/2 frequency causes too much signal energy to be lost and too much distortion for NRZ

Uncoded NRZ vs. PAM4 over Stub Channel

Both NRZ and PAM4 indicate an uncoded BER floor of about 1E-6, but NRZ has clearly far more distorted channel symbols compared to PAM4

Coded NRZ and PAM4 over Stub Channel

Using a T=10 RS code, PAM4 has eye opening, but still not enough margin for practical operation NRZ doesn't achieve any eye opening at overclocked BAUD (27.2Gb/s) to support T=10 RS code

Summary/Proposals

Link Simulations show NRZ line signaling is far superior to PAM4 over a high loss (38dB) 1m "improved FR4" channel constructed with low-cost material.

NRZ line signaling is proposed as the only PHY necessary to define in the 100GbE BP/Cable Standard for a "1m improved FR4" objective

To provide sufficient operating margin to accommodate crosstalk, reflections, and practical I/O core non-idealities:

Standard compliant 1m NRZ channels should have less than 35dB of loss at BAUD/2 Frequency

Due to expected insufficient link operating margins at >30dB channel loss which can occur with low-cost material channels, **FEC is required**:

□ A RS code with largest T possible, >=5, at <3% overclock while meeting desired latency is recommended for the FEC layer.</p>

References

1) IBM Test Fixture Channel NRZ/PAM4 study / IO Core Models: Troy Beukema, Mounir Meghelli: "Line Signaling and FEC Performance Comparison for 25Gb/s 100GbE", Sept. 2011 IEEE 100GbE Working Group meeting, Chicago.

Appendix

- ☐ Summary of Example RS Block Codes
- ☐ Known Errata in PAM4 results

Summary of Example RS Block Codes

Line Rate = N / K / Transcode * 25.0

ECC	N	К	m	Т	Trans- code	Line Rate	Rate/ 156.25	ОС	AWGN GAIN 1e-15 BER H1=0	AWGN GAIN 1e-15 BER H1=0.65	Max BGA- BGA Loss ¹ 15%HEYE 1-15 BER H1=0.65
NONE	-	-	-	-	-	25.78125	165	0%	0dB	0dB	30dB
RS	272	260	10	6	64/65	26.5625	170	3%	5.5dB	4.6dB	43dB
RS	224	208	10	8	64/65	27.34375	175	6.1%	6.2dB	5.5dB	44dB
RS	280	260	10	10	64/65	27.34375	175	6.1%	6.5dB	6.0dB	45dB
RS	352	342	12	5	512/513	25.78125	165	0%	5.0dB	4.0dB	41dB
RS	240	228	9	6	512/513	26.36719	168 + 3/4	2.3%	5.6dB	4.6dB	42dB
RS	244	228	9	8	512/513	26.80664	171 + 9/16	4%	6.2dB	5.5dB	45dB
RS	248	228	9	10	512/513	27.24609	174 + 3/8	5.6%	6.6dB	6.0dB	46dB

¹IBM Test Fixture Channels, described in References 1)

Known Errata in PAM4 Results

Excess HEYE shutdown in upper and lower eye due to asymmetric edge transitions not factored into results (to determine best achievable PAM4 result if +-3 -> -+3 transitions were coded out)