Channel Specifications Discussions

IEEE P802.3bj
100 Gb/s Backplane and Copper Cable
Task Force

John D'Ambrosia, Dell

Joel Goergen, Cisco

Adam Healey, LSI

Charles Moore, Avago

Atlanta, GA, USA, Nov 2011

Just a Word

 This presentation discusses channel model specification methodology, not specific parameters or values.

Introduction

- Interconnect Reference Models
 - Differences between Backplane & Cable Assembly
 - Test points
 - Informative (backplane) vs Normative (cable)
 - Differences with MMF test points
- Overview of Channel Specifications
 - Mask Limits?
 - Post Processing?
 - Somewhere in between?

Backplane Interconnect Reference Model

NOTE— and <n> represent the positive and negative traces of the differential pair

Figure 69B-1—Interconnect reference model

-CRn Interconnect Reference Model

Figure 85–2—40GBASE-CR4 or 100GBASE-CR10 link (half link is illustrated)

-CRn Model Including Test Boards

Figure 85A-1—Illustration of channel insertion loss budget at 5.15625 GHz

-CRn AC Coupling

- 85.8.4.5 AC Coupling
 - AC coupled
 - Style 1 40GBASE-CR4 and 100GBASE-CR10 connectors
 - Receive lanes are ac coupled
 - Coupling capacitors shall be within the plug connectors
 - Part of the cable assembly, between TP3 and TP4 in plug
 - Style 2 40GBASE-CR4 connectors
 - " shall be part of the receive function"
 - Noted may be various methods for AC coupling
 - Low frequency 3dB cutoff less than 50 kHz

-SRn Test Points

Figure 86–2—Block diagram for 40GBASE–SR4 and 100GBASE–SR10 transmit/receive paths

-SRn Test Points

nPPI = 40 Gb/s or 100 Gb/s Parallel Physical Interface
Instrument "looks" this way (e.g., direction of stimulus)

Figure 86-3—Test points for 40GBASE-SR4 and 100GBASE-SR10

-nPPI AC Coupling

- 86A.4.1 nPPI host to module electrical specifications
 - "... The module electrical input shall be AC coupled, i.e., it shall present a high DC common-mode impedance at TP1. There may be various methods for AC coupling in actual implementations."
- 86A.4.2 nPPI module to host electrical specifications
 - ".... The module electrical output shall be AC coupled, i.e., it shall present a high DC common-mode impedance at TP4.
 There may be various methods for AC coupling in actual implementations.

CAUI Test Points

Summary Comparing Test Points

TP	Backplane	CAUI	Cu (Twin-ax) Cabling	MMF (nPPI)	
	Fig 69B.1	Figs 83B-4 , 83B-6	Fig 85-2 (85A.1)	Fig 86-2 (86-3)	
TP0			@ Tx (6.5dB from TP2 on MCB)	@ PMA 4.4dB host loss max without connector	
TP1	@ Tx	@ MCB Loss from connector defined by Ea 83B-4 (1dB)	Host side 0.67dB from connector plug on host	@ MCB Loss from TP1A defined by Eq 86A-6 and 86-7 AC Coupling cap after TP1	
TP1		@ HCB Loss from connector defined by Ea 83B-3 (2.1dB)		@ HCB Loss from TP0 Defined by EQ 86A-15 and 86A-16	
TP2			1.26dB from connector on HCB	Patch cord after optical Tx (2-5m)	
TP3			1.26dB from connector on HCB	@ cable end to Optical Rx	
TP4 A		@ HCB Loss from connector defined by Ea 83B-3 (2.1dB)		@ HCB Loss from TP5 Defined by EQ 86A-15 and 86A-16	
TP4	@ Rx, which includes AC coupling	@ MCB Loss from connector defined by Ea 83B-4 (1dB)	Host side 0.67dB from connector plug on host Type 1: AC coupling before in connector Type 2: AC coupling part of Rx function	@ MCB Loss from TP4A defined by Eq 86A-6 and 86-7 AC coupling prior to TP4	
TP5			(6.5dB from TP3 on MCB)	@ PMA 4.4dB host loss max without connector	

* Note – all loss #'s at 5.15625 GHz

IEEE 802.Plenary, Nov 2011 Atlanta, GA, USA

Overview of channel specifications

Increasing post-processing

Measurement	Annex 69B	Clause 85	moore_01_0311	OIF-CEI-2.0
	Insertion loss mask	Insertion loss mask	Pulse or dibit gain	StatEye
SDD21 (victim)	Fitted attenuation mask	Fitted attenuation		
	Insertion loss deviation mask	Insertion loss deviation mask		
SDD11 (victim)	Return loss mask	Return loss mask	Channel noise	
SDD22 (victim)	rectar if 1055 mask	rectui ii 1055 iiia5k		
SDD21 (aggressors)	Insertion loss to crosstalk ratio mask	Integrated crosstalk noise	Integrated crosstalk noise	

Decreasing margin allocation in channel budget

[1] http://www.ieee802.org/3/100GCU/public/mar11/moore_01_0311.pdf

[2] http://www.oiforum.com/public/documents/OIF_CEI_02.0.pdf

Issues

- Test Point Commonality for –CR and -KR
 - Consistent with IEEE 802.3 (802.3ap, 802.3ba)?
 - Self consistent within IEEE 802.3bj?
 - Consistent with future optics test point definitions?
- Specification Complexity
 - Mask Limit Based?
 - Complex Post Processing?
 - Somewhere in between?
- Parameters

Other Issues

- Test Board Specifications
- Normative vs Informative Channel Specifications
 - Backplane
 - Cabling
- If needed Channel definitions for non-FEC and FEC PHYs