

Making Next-Generation Networks a Reality.

## Output Voltage Proposal for PAM-4 Transmitter

IEEE 802.3bj Task Force November Plenary Meeting, Atlanta, GA

Ziad Hatab November 8-10, 2011

#### Introduction

- ▶ PAM-4 PHY is expected to equalize channel insertion losses of around (-50)db at 12.5 GHz.
- ▶ At 1v peak-to-peak differential output voltage (Vpp), FEC with at least 7dB of coding gain may be required for 10<sup>-12</sup> BER<sup>1</sup>.
- ▶ Part of this FEC coding gain (1dB 2dB) can de distributed to:
  - Transmitter only (Higher Vpp)
    - Increased power, noise, and jitter
    - Process limitations
  - ► Transmitter and receiver (Trellis/MLSD²)
    - Increased latency and complexity
- ▶ This presentation will investigate the gain obtained from higher Tx Vpp in the presence of higher receiver noise and transmit jitter.

<sup>1:</sup> http://www.ieee802.org/3/bj/public/sep11/hatab\_01\_0911.pdf

<sup>2:</sup> http://www.ieee802.org/3/bj/public/sep11/dabiri\_01\_0911.pdf

#### Simulations Parameters

| Channel                                                                    | Channel                                                           |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Transmitter                                                                | Receiver                                                          |  |
| Device Package: Pkg35mm_T21mm115ohm LoXtalk_BGALoXtalk.s8p                 | <b>Device Package:</b> Pkg35mm_T21mm115ohm LoXtalk_BGALoXtalk.s8p |  |
| Device Package<br>Crosstalk:                                               | Device Package<br>Crosstalk:                                      |  |
| <b>R</b> <sub>1</sub> : 50 ohm                                             | <b>R</b> <sub>2</sub> : 50 ohm                                    |  |
| <b>C</b> <sub>1</sub> : 0 F                                                | <b>C<sub>2</sub>:</b> 0 F                                         |  |
| Channels: TEC_Whisper42p8in_Nelco6_THRU_C8C9.s4p                           |                                                                   |  |
| Near-End Crosstalk: 6 aggressors Asynchronous Victim Tx replicated         |                                                                   |  |
| Far-End Crosstalk:<br>2 aggressors<br>Asynchronous<br>Victim Tx replicated |                                                                   |  |

| Link                                                                 | Transmitter                                     | Re                                             |
|----------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|
| Bit Rate:<br>25 Gb/s                                                 | Test Pattern: PRBS31                            | Random<br>-144 dBm/l                           |
| <b>Modulation:</b> PAM-4                                             | Bit Encoding:<br>64B/66B                        | (4.5 mv —                                      |
| Signaling Rate:<br>12.890625 GHz                                     | <b>Vpp:</b> 0.8 v → 1.2 v                       | NA <b>Random</b>                               |
| Number of symbols simulated: 50000  Target symbol error ratio: 10-12 | <b>Equalizer:</b><br>NA                         | CT Filte                                       |
|                                                                      | Deterministic Jitter:<br>0.05 UI (peak-to-peak) | NA <b>Equalize</b>                             |
|                                                                      | Sinusoidal at 5 MHz  DCD:                       | DFE: 12<br>FFE: 8 (T-S<br>LMS<br>CDR:<br>Ideal |
|                                                                      | 0.02 UI (peak-to-peak)  Random Jitter:          |                                                |
|                                                                      | 0.6 ps (RMS)  Total Jitter:                     | Perform<br>SNR (dB)                            |
|                                                                      | 0.21 UI (peak-to-peak)                          |                                                |

### eceiver n Noise: $/Hz \rightarrow -142 \text{ dBm/Hz}$ $\rightarrow$ 5.5 mv RMS) inistic Jitter: m Jitter: er: er Structure: -Spaced) nance Metrics:

## PAM-4 Eye Opening at Transmitter with Package



► Total Tx Jitter  $\approx 1UI - 0.47UI - 0.33UI = 0.2UI$ 

#### Power Spectral Densities



## System SNR vs. Vpp with Constant AWGN







# System SNR vs. Vpp with Higher AWGN







#### Conclusion

- Investigated PAM-4 output peak-to-peak differential voltage values:
  - Vpp was varied from 0.8v to 1.2v
    - With no additional Rx noise and Tx jitter
    - With additional Rx noise (AWGN up to -142 dBm/Hz):
      - AWGN is dominant noise source. Other sources can be considered:
        - Additional Tx jitter
        - Non-linear distortions
- Increasing Vpp from 1.0v to 1.2v :
  - With constant AWGN levels (5.5 mv RMS) there is about 2dB improvement in SNR margin.
  - ▶ With increasing AWGN levels (4.5mv to 5.5mv RMS) there is about 1dB improvement in SNR margin.
- Propose to adopt 1.2v output peak-to-peak differential voltage for PAM-4 PHY.