PAM-2 Broad Market Potential

Scott Kipp (Brocade)

Pravin Patel (IBM)

Mike Li (Altera)

Mike Dudek (Qlogic)

November 1st, 2011

Meeting Broad Market Potential

- This presentation shows how PAM-2 (NRZ) has broad market potential for 100GbE Backplane applications
- Simulations from several companies (patel_01_0911) have shown PAM-2 supports 30dB of loss which correlates to:
 - 1 meter (39.2") on Megtron6 with 0.68dB/inch material loss
 - 0.67 meter (26") on Improved FR4 with 1.04dB/inch material loss
- With FEC and no overclocking(Beukema_01_1111), the insertion loss can be increased to 35dB and support:
 - 1.2 meter (48") on Megtron6 with 0.68dB/inch material loss
 - 0.79 meter (31.3") on Improved FR4 with 1.04dB/inch material loss
- With FEC and Serial PHY, the PAM-2 solution supports Improved FR-4 channels over 1 meter

Blade Server Architecture

Blade Server Market

• Blade Servers are typically less than 10U high and can be supported by less than 1 meter

IBM Maximum Distance of 25"

Blade Server Midplane Architecture

- Typical Midplane distance of 15" = 10" + 5"
- Maximum midplane distance of 22" = 17" + 5"

Blade Server Summary

- Many blade servers have switch blades in the middle of the midplane and do not go card edge to card edge
- For worst case blade servers, the full channel distance would be <34"
- This correlates with Chalupsky_02_0311

		Backplane or Midplane	Card 2	Total
Max Blade Switch Distanct	6"	22"	6"	34"

Modular Switches

- The most challenging backplanes are the large modular switches/routers that can exceed 30RU or half a rack
 - These are out of scope for 802.3bj because they need more than 1 meter long backplanes
- Most half-rack switches/routers are appropriate and they usually come in at ~14RU
 - The PCB usually comprises 3-7% of the cost of the modular switch depending on other component costs
- Quarter-rack switches are easier to support

7RU = 12.25"

The same same of the same of t

14RU = 24.5"

33RU = 57.75"

Modular Switch Architectures

- Three main types of modular switch designs
- 1. Backplane
- 2. Midplane
- 3. Orthogonal

Backplane Architecture

• If one backplane is used, the switch blades are usually the

center blades

Distance from Port Blade to Switch Blade about 24"

Backplane Architecture Summary

- Most backplane architectures have the switch blades in the middle of the backplane
- For most backplanes, the full channel distance would be <34"

		Backplane or Midplane	Card 2	Total
Max Blade Switch Distanct	5"	24"	5"	34"

Midplane Architecture

• Similar to Backplane Architecture but the switch cards are on the backside of the midplane

Midplane Architecture Summary

- Most backplane architectures have the switch blades in the middle of the backplane
- For most midplanes, the full channel distance would be <34"

	Card 1	Backplane or Midplane	Card 2	Total
Max Blade Switch Distanct	5"	24"	5"	34"

Orthogonal Architecture

Orthogonal has no backplane and is shorter

Orthogonal Architecture Summary

- Orthogonal architectures are the simplest case
- For most orthogonal architectures, the full channel distance would be <24"

	Card 1	Backplane or Midplane	Card 2	Total
Max Blade Switch Distanct	12"	0"	12"	24"

What about Greater than 1 meter?

- If the channel distance on each port card is extended to 12" instead of 5", then the channel distance goes to over 1 meter.
- In these scenarios, a Serial PHY could be used to extend the distance on each card

Backplane Summary

Channel Type	Card 1	Backplane or Midplane	Card 2	Total
Patel_1a_0911 measured test channel	5.1"	29"	5.1"	39.2"
Max Blade Switch Distance	6"	22"	6"	34"
Max Backplane Distance	5"	24"	5"	34"
Max Midplane Distance	5"	24"	5"	34"
Max Orthogonal Distance	12"	0"	12"	24"
Max Retimed Distance	12"	24"	12"	48"

Calculated Trace Lengths

- Assume 2 connectors with 0.65dB/connector and 6 Vias with 0.2dB/via loss
- With the 35dB loss budget, the "Better Material" loss is calculated over 34" since this meets the broad market potential

	Measured Megtron6 Channel (Patel_01_0911)	_ <u>_</u>	"Better	Channel	Improved FR4 with FEC	"Better Material" with FEC
Loss Budget (dB)	29.2	30	30	35	35	35
Loss of 2 Connectors (dB)	1.3	1.3	1.3	1.3	1.3	1.3
Loss from 6 Vias (dB)	1.2					
Loss Budget for	26.7	27.5	27.5	32.5	32.5	32.5
Traces (dB) Material Loss (dB/inch)	0.68					
Trace Distance (in)	39.3	26.4	28.9	47.8	31.3	34.2
Trace Distance (m)	1.0	0.7	0.9	1.2	0.8	1.0

Conclusion and Summary

- Without FEC and 30dB of loss, the PAM-2 solution can support 1 meter channels with Megtron6
 - If Megtron6 cost is 50% more than FR4, it should add 25% to the cost of the PCB and less than 1.75% to the cost of the switch in 2015
 - Since the 100G IC cost will increase, the PCB % of the cost will probably be less
- With FEC, 35dB and "Better Material", the 34" broad market is met when the loss of the material is 0.95dB/in
- With serial PHY, the PAM-2 solution can support implementations with more than 1 meter of FR4
- With full support of blade servers and most modular switches, the PAM-2 solution reaches a broad market potential as defined in the 802.3bj 5 criteria