Bringing Forward the Dk & Df Algebraic Model (v1.01)

Beth (Donnay) Kochuparambil

Joel Goergen

IEEE - Nov. 2011

Overview

- Quick look at algebraic tool
- Tool to fill a gap
- Looking forward

Algebraic Tool - v1.01

- Action item from Sept. meeting:
 - available online
 - Information: http://www.ieee802.org/3/bj/public/nov11/goergen-01-1111.pdf
 - Tool: http://www.ieee802.org/3/bj/public/nov11/goergen-02-1111.xlsm
- Created in MS Excel '07
 - Haven't tried in earlier version
 - Need to enable/trust macros
 - Go to , click Excel Options (at bottom of menu) >> Trust Center >> Trust
 Center Settings >> Macro Settings

Algebraic Tool - v1.01

- Conductor and dielectric loss ONLY in v1.01
 - NO SURFACE ROUGHNESS
 - No via, connector, reflection, or xtalk penalty... yet.
- Use graph comparison with grain of salt
 - Uses same design (trace width, diel. height, etc)
 - Z_0 will be different -> not fair comparison?
 - KR IL limit Amax may be better comparison
- No secret sauce (see information document: goergen_01_1111)
- Not 2D/3D simulator... not trying to be

Filling a Gap

- Inconsistent losses seen
 - Improved FR4:
 - 38.2dB loss for 40in and 2 connectors (beukema_01_1111)
 - 1.04dB/in w/o surface roughness (kipp_01_1111, originally goergen_01_0911)
 - Megtron6:
 - 0.9dB/in (ghiasi_01_1111)
 - 0.65-0.68dB/in (kipp_01_1111)
 - 30.2dB for 1m and 2 connectors (meghelli_01_0911, originally patel_01_0911)
 - Even within algebraic tool (continued on next page)
 - Understandable, but difficult to work together
- The Algebraic Tool helps us talk the same language
 - If you take a loss number/plot from the tool, expect to show Dk, Df, w, b, t, and L

Algebraic Tool v1.01 – Improved FR4 with tolerances

Definition: "Improved FR-4" as defined by IEEE P802.3ap

• Improved FR-4 (Mid Resolution Signal Integrity):

100Mhz: Dk ≤ 3.60; Df ≤ .0092 1Ghz: Dk ≤ 3.60; Df ≤ .0092

2Ghz: $Dk \le 3.50$; $Df \le .0115$ 5Ghz: $Dk \le 3.50$; $Df \le .0115$ 10Ghz: $Dk \le 3.40$: $Df \le .0125$

20Ghz: $Dk \le 3.20$; $Df \le .0140$

 Temperature and Humidity Tolerance (0-70degC, 10-90% non-condensing):

Dk:+/- .04 Df: +/- .001

0511

Remember goergen_01

• Resin Tolerance (standard +/-2%):

Dk:+/- .02

Df: +/- .0005

IEEE802.3 100Gb/s Ethernet Electrical Backplane and Twinaxial Copper Cable Assemblies Study Group

Imp. FR4 – low tolerances

Material/Design Characteristics		Freq	Dk	Df
Length (inch)	40	1.00E+08	3.54	0.0077
Trace Width (mil)	6	1.00E+09	3.54	0.0077
Cu Thickness (mil)	0.67	2.00E+09	3.44	0.01
Diel. Thickness (mil)	13.6	5.00E+09	3.44	0.01
		1.00E+10	3.34	0.011
		2.00E+10	3.14	0.0125

Imp. FR4 – typical

Material/Design Characteristics		Freq	Dk	Df
Length (inch)	40	1.00E+08	3.6	0.0092
Trace Width (mil)	6	1.00E+09	3.6	0.0092
Cu Thickness (mil)	0.67	2.00E+09	3.5	0.0115
Diel. Thickness (mil)	13.6	5.00E+09	3.5	0.0115
		1.00E+10	3.4	0.0125
		2.00E+10	3.2	0.014

Imp. FR4 – high tolerances

Material/Design Characteristics		Freq	Dk	Df
Length (inch)	40	1.00E+08	3.66	0.0107
Trace Width (mil)	6	1.00E+09	3.66	0.0107
Cu Thickness (mil)	0.67	2.00E+09	3.56	0.013
Diel. Thickness (mil)	13.6	5.00E+09	3.56	0.013
		1.00E+10	3.46	0.014
		2.00E+10	3.26	0.0155

- Imp FR-4 definition does *not* account for surface roughness or design
- It is premature to assume a loss/m

Looking Forward

- Understand variations in insertion loss
 - Manufacturing differences
 - Trace width variation, even if Z_0 is the same
 - Simple experiment shows ~0.2dB/in variation at 12.9G for 50ohms just by going 6mil width -> 10mil width
 - Foil roughness
- Spend time on the tool
 - E-mail with questions: edonnay@cisco.com
 - Next version includes surface roughness, multi-board abilities, and likely to include connector loss
 - To be presented on conf. call by early Dec.
- Build consensus on assumptions/loss
 - Do not forget cost implications not included in tool