Mated Board and Host Specifications

IEEE 802.3bj Task Force

Mike Rost – Molex Patrick Casher - Molex

Sept 24-26, 2012

Overview

Addressing following comments

308/311 - Transmitter/Host RL

309 - Channel Loss

316 – MCB loss

317 - HCB loss

319 - MCB-HCB mated RL

QSFP+ HCB Microstrip Construction

- Based on 12-12-12 mils differential microstrip with 20 mils ground shield separation with loss of 5.6 dB@14 GHz
 - Substrate material Rogers 4350B
 - Signals are routed on top and bottom
 - Trace length 3.4"
 - To meet target loss of 1.75 dB, RO3003 with rolled Cu will be needed instead of RO4350B with ED

Strip-line HCB Construction

- CFP HCB traces are 7.5" long with max loss of 2.1 dB at 5.5 GHz
- To minimize losses
 - Used Rogers 3003
 - Stripline construction of 12-13-12 mils was used
 - Roger 3003 laminates were bonded with Roger 3850 LCP material (does require high temperature press)
 - To keep the surface roughness losses low rolled Cu was used
- Based on the above construction one may build a HCB meeting max loss of 1.75 dB at 14 GHz with stripline
 - In the case of QSFP28, max PCB thickness of 1mm (0.040"), a single routing layer or embedded microstrip would need to be used
- Alternatively we could increase HCB loss to 2 dB giving little more implementation flexibility but small enough not requiring open other parameters.

RO3003 Stripline Losses

- Loss per inch calculated two different method
 - Some of the noise is due to SMP connector and the cal kit

HCB loss Moving from RO4350B to RO30003

- Loss for 12 mil single-ended trace
 - Using Rogers Corp calculator (free download but require registration)
 https://www.rogerscorp.com/acm/technology/index.aspx
 - Loss/in at 14 GHz will improve from 0.66dB/in to 0.50 dB/in
 - Current HCB

MCB and HCB Loss Profile

- Addressing comment 316/317
 - 2 dB HCB loss will make it more manufacturable

Host Aggregate Return Loss

- Host aggregate return loss can be written as
 - SDD21/SDD12 is the through loss
 - When the host PCB loss is the identical to MCB loss then one may approximate SDD21/SDD12 to unity

$$SDD11_TP1a = SDD11_Host + SDD21 \bullet SDD12 \bullet \left(\frac{SDD11_Host}{1-SDD22_MCB \bullet SDD11_Host}\right)$$

Mated Board and Host Return Loss and Return Loss at TP1a

CR4 Host Mated Channel Loss

Comment 309, equation shown is for SDD21 not loss

Proposed Ghiasi and DiMinico Loss Overlaid

Comment 309, equation shown is for SDD21 not loss

Issue of Relaxing Mated Board Return loss

- As the frequency has increased and board loss reduced any board or connector imperfection shows up as insertion loss and ILD
 - Increasing MCB/HCB loss is the best way to hide a problem than can exist in real system where IC are placed 0.5" from the connector
- If we relax the mated board return loss without relaxing the host then realistic host will not meet the RL
- If we relax the mated board and host then there will be some signal integrity penalty
- We should relax the return loss at last resort and while understanding the implications.

QSFP28 MCB-HCB Crosstalk

- Include 4 NEXTs and 3 FEXTs
 - As the board loss has gone down crosstalk has increased

MCB-HCB Crosstalk	10.3125 GBd ICN (mV)	25.78 GBd ICN (mV)	28.0 GBd ICN (mV)
Rise Time 20-80% (ps)	24.000	9.600	8.840
MDNEXT	0.323	1.390	1.612
MDFEXT	3.593	4.562	4.673
ICN	3.607	4.769	4.943

Summary

- Current HCB loss of 1.75 dB at 14 GHz can be met if superior material and construction is used
 - To facilitate more flexible implementation HCB loss could relaxed to 2 dB without material impacting or need to adjust other specifications
- If the HCB board loss is increased to 3.75 dB one may be able to correct for signal at TP1a with software CTLE having 2 dB additional but no longer host return loss can be measured
 - When HCB has loss of 3.75 dB even a short at connector just due to the board loss could read RL of -7.5 dB!
- Mated board return loss shown here are based on early boards with SMA on MCB and SMP on the HCB impacting the RL and require further upgrade for 25G operation
- HCB and MCB are functional instrument for signal measurements and host return loss measurement requiring very carful construction otherwise the whole concept is useless!

Thank You