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Abstract 
New growth demands in the bandwidth requirements for short and long reach electrical channels have 
pushed the performance limitations of traditional linear passive interconnects such as high-speed 
backplanes and connectors.  Most chip and system vendors regard 3Gbps data rates over copper as 
mature technology today and are rapidly prototyping 6Gbps and 10Gbps hardware. Original 
standardisation work for high-speed digital interfaces focused on defining the transmitter and receiver 
compliance in terms of eye diagram analysis utilizing masks and jitter tolerance. The remaining work of 
defining complete channel requirements is less accurately defined. As the bandwidth and crosstalk limits 
of the electrical interface are approached, the ultimate result is a degradation of bit error rate over the 
physical layer. This undesirable effect mandates the need to fully characterise the capability of the 
electrical channel from end-to-end.  
Traditional methods to simulate an emphasised transmitter, physical channel, and equalising receiver in 
the time domain or frequency domain are not sufficient. Low probability events can not be accurately 
modelled without long simulation times. To optimise the efficiency of simulations, a novel methodology 
based on statistical methods is introduced that allows fast and accurate compliance testing of differential 
channels. The following paper describes the algorithm and compares measurement results to a Matlab 
implementation of the algorithm using a design case study of 3Gbps and 6Gbps transmitter technology 
in 0.13um CMOS. 
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Introduction 
Channel compliancy is a key issue in the development of any electrical signalling specification which 
must contend with the interrelations between the transmitter, channel, and receiver.   Typically two of 
these three elements will be defined with the third element being a function of these two definitions.  
Furthermore, high speed serial links (HSSL) employ signal condition techniques at the transmitter and 
equalization techniques at the receiver.  Thus, HSSL specifications must deal with the situation 
represented in Figure 1.       

 
Figure 1 - The Interconnect  

In defining the performance of a transmitter or receiver, eye masks are specified.  These eye masks are 
so-called worst case definitions for a bit error rate of definition 10-b. This implies that if the signal were 
sampled in real time, it would only violate the mask 1 bit every 10b bits. The transmit eye effectively 
limits the maximum jitter for a given edge rate and the minimum amplitude, for an ideal termination 
impedance.  The receiver eye mask defines a worst case stressed eye. This implies that if a jittered and 
attenuated signal violates the eye mask once every 10b bits, in real time, then a receiver must receive it 
with a Bit Error Rate better than 10-b.  
In defining the performance of a channel, scattering parameters (s-parameters) are used.  A vector 
network analyzers (VNA), e.g. Agilent Technologies� N1900-Series Physical Layer Test System 
(PLTS), can be used to provide mixed-mode frequency domain measurements.  The forward differential 
channel response, SDD21, is a natural starting point for defining a channel compliancy model.  The use of 
SDD21 to develop a channel compliancy model poses a very significant challenge when applied to a 
backplane environment.  The associated �layer connection effect� creates an environment where the 
performance of one layer can significantly vary from another with the top layer representing the worst-
case layer and the bottom layer representing the best-case performance.  Figure 2 demonstrates the 
impact of layer connection on a 20 inch channels where the layer connection was varied in a 0.200� 
thick backplane.  Furthermore, the amount of variation will grow with the associated board thickness of 
the backplane and daughter cards.   
During the development of XAUI in the 10G Ethernet specification, the decision was made to define a 
SDD21 channel compliancy model, based on  the median performance of observed channel data up to a 
frequency range of 3.125 GHz1  � �The compliance interconnect limit of 47.4.1 represents the median 
performance of a range of interconnect designs. The range included designs from 46 to 56 cm in total 
length, having trace widths of 0.125 to 0.300 millimetres, and using different grades and thicknesses of 
FR4.�2  This model is shown in Figure 3.   When combined with either a compliant transmitter or 
receiver, channels with a SDD21 response above the compliancy model would meet the required bit error 
rate of 10-12. 



 
Figure 2 - Impact of Layer Connection 

 
Figure 3 � XAUI Channel Model 

Looking at the channel response in the frequency domain is fundamental to gaining insight into the 
performance of the channel and how it affects the signal feeding into the receiver using either Fourier 
transforms ( )( ) ( ){ }fHtsfftiffttr ⋅=)(  or standard time domain simulators capable of accepting the s-
parameters.  The XAUI channel model, however, is truly only informative, as the impact of 
discontinuities and group delay are not represented.  It is smooth in comparison to the real channels 
shown in Figure 2, with no apparent ripple.  These ripples can easily result in a �dipping� below the 
channel compliancy model at various frequencies.  This leads to concern regarding whether the channel 
will operate as intended since the channel compliancy model has not been met.   
So from a specification perspective the limitations of this type of channel compliancy model make it 
more useful for informative purposes than normative purposes.  Thus as equalization schemes such as 
transmit emphasis and receiver equalization are introduced to push a given channel�s bit error rate to its 
theoretical limit a new channel compliancy methodology is needed by the user.  This methodology needs 
to look at the channel as part of the system, illustrated in Figure 1, rather than on its own merits.  This 
methodology needs to utilize all the information provided by 4 port s-parameter characterization 
combination with the total jitter present at the receiver sampler to give insight into the bit error rate 
performance of the total system.   



Total sampling jitter is contributed from the transmitter, channel and receiver. However the jitter 
introduced by the channel is inherently contained within the s-parameters and, as will be explained, is a 
function of the transmitter. Jitter is best defined by understanding the bathtub representation i.e. the 
measurement bit error rate or inverse error function (Q) versus the sampling offset. Gaussian Jitter (GJ), 
otherwise known as Random Jitter, is defined as the gradient of the linearised portion of the bathtub at 
the bit error rate of interest.  High Probability Jitter (HPJ), otherwise known as Deterministic Jitter, is 
the intersection of the linearization at the x-axis where Q=0.   
This model, shown in Figure 4, is formally known as a Dual Dirac model and allows the system designer 
to add all HPJ terms in the link linearly, and to Root Mean Square all GJ terms. The GJ terms are then 
multiplied by the twice the Q required by the link to give the Total GJ. And the Total Jitter calculated as 
the linear sum if the Total HPJ and Total GJ, which must be then less than 1Unit Interval for the link to 
work. 

 
Figure 4 � Dual Dirac Model 

It is necessary to fully characterize the interconnect capability from the transmitter through the channel 
to the receiver.  It is also necessary to employ a statistical methodology that will capture the impact of 
low probability events.  The S-parameter characterization of the channel and system will provide the 
building blocks for further simulation and analysis that will provide the quantitative answers.  This will 
allow the inclusion of:  

•  real channel data, including phase data and mode conversions 
•  in-band crosstalk resulting from similar switching signals 
•  out-of-band or alien crosstalk resulting from other signalling 
•  transmit jitter 
•  receiver jitter 



The inclusion of all of these parameters can then be applied statistically to the problem at hand to 
determine the channel�s expected bit error rate in the system and its compliancy to the targeted 
specification.  Infineon Technologies has developed such a technique referred to as �StatEye.�  The 
focus of this paper will be to explain this technique utilizing backplane channels from Tyco Electronics 
HM-Zd Legacy Backplane.  Validation testing of the technique will be provided by Agilent 
Technologies.   

StatEye Methodology 
Pulse Response Theory 
The pulse response of a channel can be understood as the signal resulting when an NRZ pulse, ( )ttx ,  is 
transmitted through the channel under investigation. The NRZ pulse has a width equal to the period of 
the bit rate of interest and therefore the pulse response is only valid for a specific baud rate.Given that 
the transfer function of the channel, ( )ωS ,  is known in the frequency domain, the pulse response is best 
calculated by multiplying it with the fast Fourier transform of the NRZ pulse, ( )ωtx . 
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As the time domain and frequency domain functions are actually discrete measurements great care must 
be taken in the generation of the transmit pulse to ensure the period accuracy. The pulse response of the 
channel should not be confused with the impulse response which is equivalent to a transmit pulse of 
infinitely small period but a total area of one, a.k.a. dirac. 
The pulse response allows an understanding of how Intersymbol Interference (ISI) occurs through 
superposition, Figure 5. Given a stream of either positive or negative pulses (dashed) the superposition 
of these pulses (solid) causes an ever worsening signal integrity as the width of the pulse response 
increases. This ISI is very similar to wander encountered with AC coupled signals except that the pulse 
response of an electric channels is asymmetrical. The ISI due to the variation of the initial signal 
amplitude at the beginning of each period is at the zero crossing time converted into a time jitter. At the 
point where the ISI is of the same amplitude as the signal the eye becomes closed and the jitter more 
than a complete bit period. 

 
Figure 5 - Intersymbol Interference (ISI) 



Equalisation 
Bandwidth limitations can be equalised by cascading the channel with a linear time continuous filter, i.e. 
one that can be represented in both the time and frequency domain, which is the exact inverse pulse 
response of the channel. Given this theoretical filter response the resulting transfer function would be a 
linear response with constant gain over frequency. As this type of filter is both theoretical and 
impractical to build an approximation is usually used. Working at lower bit rates, where accurate signal 
processing can be performed, a resulting raised cosine spectrum or partial response can be achieved3. 
For higher bit rates where only simple equalisation can be implemented the time continuous filter is 
usually only a finite number of zeros and poles. By optimal placement of these zeros and poles an 
enhancement of the bandwidth of the channel can be achieved which to a certain degree approaches a 
simplified partial response.  A simple example, Figure 6, shows how the frequency response of the 
channel is increased in bandwidth and the resulting pulse response is narrowed, which results in a 
reduction of ISI. 

 
Figure 6 - Equalised Frequency and Pulse Response 

The disadvantage of linear time continuous equalisers can be understood by considering the crosstalk 
frequency response. The crosstalk frequency response is the transfer function of a Near End Crosstalk 
Aggressor Tx pair (NEXT) or Far End Crosstalk Aggressor Tx pair (FEXT) to the receiver, Figure 7. 
The equaliser described above for example, will enhance this crosstalk frequency response in the same 
way, increasing the crosstalk energy at the receiver thus decrease the resulting total received signal. 

 
Figure 7 - Crosstalk Definitions 



A Decision Feedback Equaliser (DFE) is a nonlinear equaliser insofar that it cannot be represented in the 
frequency domain. The concept of a DFE lies in its ability to cancel the post-cursors of the channel pulse 
response4. If we define a pulse response in terms of its amplitude at baud spaced samples, Figure 8, 
where rn with n<0 are called pre-cursors and rn with n>0 are called post-cursors, the DFE can cancel the 
ISI caused by post-cursors. Given that the channel response is known and an equalised signal has been 
correctly received as a 1 or 0, then referring to Figure 9 the influence of the post-cursors can be removed 
by setting kn=rn.  Since the DFE only feedbacks a decision any noise present on the signal is not 
amplified. In the case, however, where the noise causes a decision error this error is then fed back to the 
receiver and can cause error propagation5. 

 
Figure 8 - Pulse Response Definition 

 
Figure 9 - DFE Architecture 

Channel Characterization 
All the electrical performance information for a differential channel can be extracted using a four port 
VNA. It is actually the single ended S parameters that are measured in the frequency domain. Figure 7 
shows the format for this information and the port labelling scheme for a differential channel that is 
measured as two single-ended channels. 
These are mathematically transformed into the frequency domain balanced, or mixed mode, or 
differential S parameters.  See Figure 11.  These parameters can be used directly to give information 
about the differential return or insertion loss. Further transformation into the time domain to give 
information about the differential impedance profile of the channel or the location of the conversion of 
differential signal into common signal.   



 
Figure 10 - Lab Setup 

 
Figure 11 - S Parameters Quadrants 

In order to interpret the large amount of data in the differential parameter matrix, it is helpful to analyze 
one quadrant at a time. The first quadrant is defined as the upper left 4 parameters describing the 
differential stimulus and differential response characteristics of the device under test. This is the actual 
mode of operation for most high-speed differential interconnects, so it is typically the most useful 
quadrant that is analyzed first. It includes input differential return loss (SDD11), input differential 
insertion loss (SDD21), output differential return loss (SDD22) and output differential insertion loss (SDD12). 
Note the format of the parameter notation SXYab, where �S� stands for Scatttering Parameter or S-
Parameter, �X� is the response mode (differential or common), �Y� is the stimulus mode (differential or 
common), �a� is the output port and b is the input port. This is typical nomenclature for frequency 
domain scattering parameters. All sixteen differential S-Parameters can be transformed into the time 
domain by performing an Inverse Fast Fourier Transform (IFFT). The matrix representing the time 
domain will have similar notation, except the �S� will be replaced by a �T� (i.e. TDD11). 
The second and third quadrants are the upper right and lower left 4 parameters, respectively. These are 
also referred to as the mixed mode quadrants. This is because they fully characterize any mode 
conversion occurring in the device under test, whether it is common-to-differential conversion (EMI 
susceptibility) or differential-to-common conversion (EMI radiation). Understanding the magnitude and 



location of mode conversion is very helpful when trying to optimize the design of interconnects for 
gigabit data throughput.  
The fourth quadrant is the lower right 4 parameters and describes the performance characteristics of the 
common signal propagating through the device under test. For a properly designed device there should 
be minimal mode conversion and the fourth quadrant data is of little concern. However if any mode 
conversion is present due to design flaws then the fourth quadrant will describe how this common signal 
behaves. 

Cascading of Channel with Transmitter and Receiver Return Loss Model 
After the full s-parameters of a channel have been measured the effect of reflections can be modelled 
using a worst case transmitter and receiver return loss. After converting the s-parameters into the 
transmission matrix6, performing a matrix multiplication and converting back to the s-parameters, the 
overall transfer function is obtained. 
Given:  

nmS ,  is the measured 4 port differential data of the channel 

22Tx  is the transmitter return loss 

21Tx  is a single pole filter 

11Rx  is the receiver return loss 
( )ωTr  is the channel response transfer function as defined 
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In addition to the return loss, a typical transmitter is not capable of generating an ideal NRZ pulse so the 
transfer function is additionally multiplied by a single pole filter with a corner frequency of 0.75xfbaud, 
typical for CML style outputs. 

Theoretical Analysis of Receiver Pulse Response 
The superposition of post-cursors and pre-cursors to form ISI is statistical in nature. Given a full random 
binary data stream and a finite number of cursors, each possible combination of cursors can superimpose 
each with equal probability. 
A simple example, Figure 12, with an arbitrary sample time has one pre-cursor and two post-cursors and 
shows how the eight possible combinations of the cursors can combine to cause ISI. In this example the 
ISI is as large as the signal itself and closes the eye. The probability of each amplitude can be 
represented by a Conditional Probability Distribution Function which for this example is simply eight 
diracs or deltas, δ , of equal probability i.e. 1/8. As more cursors are taken into account the number of 
possible combination increases and the Probability Distribution becomes more detailed and can be 
represented mathematically taking into account the effect of the DFE cancellation of the post-cursors. 



 
Figure 12 - ISI PDF 

Given, 
( )τnr  are the cursors of the pulse response at sampling time τ  

be  is the ideal static equalisation coefficients of the b tap DFE 
( )τc  is the set of equalised cursors at sampling time τ  
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where, 
nd are the possible combinations of the data stream and is either 1 or 0 
( )τ,ISIp  is the probability of a given ISI occurring 

It would seem from the methodology that to calculate the PDF of a pulse response with a large number 
of cursors, >10, all possible combination would have to be calculated e.g. for 30 cursors 230 
combinations would have to be calculated. This sledge hammer approach is not necessary as the 
problem can be broken down into small problems. 



Given, 
c is an example set of four cursors 
nd are the possible combination of bits in the data stream 
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Given an example of four cursors, the PDF can either be calculated from 24 diracs or the convolution of 
two PDFs calculated from 22 diracs. In this way a pulse response of 40 cursors could be calculated by 
convoluting 20 smaller PDF calculated from 22 diracs. The saving in required processing steps can 
clearly be seen. 

 
Figure 13 - Family of Conditional PDFs 

For each arbitrary sample point within the pulse response a Conditional PDF can be calculated, forming 
a family of Conditional PDFs, Figure 13. Due to the discretisation when storing and building a PDF an 
accuracy error occurs that can be defined, Figure 14.  Given that the discrete PDF array is defined from 
�AMAX to AMAX and has m bins, then the error of a single entry has a defined bin error, ε  



 
Figure 14 - Binning of PDF 

where 
m

AMAX
m

AMAX >>− ε  

For each convolution the error accumulates and can be represented for the simple example above  
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Given that the bin error associated with a PDF is evenly distributed with a zero mean and 

variance
12

2
2

2
nεσµ == then N convoluted PDFs will also have a bin error with zero mean but a variance 

of 
12

2
2

2
nN εσµ == . The peak error given a probability equal to the Bit Error Rate of interest is then 

 σ⋅Q where Q is the inverse error function of the probability of interest. E.g. 

%5.10143.07

102.4
12
001.050

50,001.0,1000,0.1

2
10

50max

6
2

2

max

12
≈≈⋅=

⋅≈⋅=

====

−=
=

−

µε

µ

ε

BER
N

NmAMAX

 



Given an arbitrary receiver sampling point with no jitter then the associated PDF sampled is simply the 
already generated Conditional PDF from the family of PDFs. If the sampling point is jittered with a 
known distribution then the sampling sees an average conditional PDFs, Figure 15. 

 
Figure 15 - Average Conditional PDF 
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Figure 16 - Crosstalk Pulse Response 

To account for all the effects in the channel, the transfer function (i.e. including return loss effects) and 
pulse response is calculated for all possible sources including crosstalk, Figure 16 : 

1. forward transmitter differential mode to differential mode 
2. each crosstalk aggressor differential mode to differential mode 
3. each crosstalk aggressor common mode to differential mode 
4. forward transmitter common mode to differential mode 

For each of the additional transfer functions i.e. 2,3 and 4, a set of cursors is defined 
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where each of crosstalk conditional PDFs are convoluted in turn. 



The arbitrary position of ( )τ,ISIpaverage  can now be swept over the complete pulse to give a family of 
average conditional PDFs, Figure 17a/b. Using a contour algorithm the points of equal probability of the 
integrated PDFs can be drawn creating a �so-called� StatEye, Figure 17c. This StatEye shows the 
probability of receiving a specific amplitude for a given arbitrary receiver sampling point. 

 
Figure 17 - StatEye Contouring 

By plotting the probability at the zero amplitude crossing for the family of CDF against the receiver 
sampling point, a Bathtub, Figure 17d is generated from which the Gaussian and High Probability Jitter 
can be extracted. 



Implementation 
The implementation of such an algorithm is feasible on a typical >1GHz processor within interpreting 
languages such as Matlab®. Matlab provides a user friendly and fast prototyping interfaces that allows 
the algorithm to be implemented and debugged.  

 
Figure 18 - Implementation Execution and Data Flow 

A recommended flow, shown in Figure 18, consists of three non-nested loops. Loop#1 scans the pulse 
response, initially storing the cursor values. Loop#2 then calculates the Conditional PDFs and loop#3 
scans the pulse again and calculates the Average Conditional PDFs.  Using time set intervals of 0.01Unit 
Intervals and typically 1000 bins for the PDFs a good compromise between accuracy and execution time 
(~30 seconds) is found. If faster execution times are necessary then it is recommended to move to a C 
implementation where execution times can be increased by a factor of four. However it is recommended 
that this step only be taken after an initial implementation in Matlab. A version of this algorithm is 
currently under development which will interface directly to Agilent�s PLTS software. 



System Budgeting and Interoperability 
Using the �StatEye� methodology systems can be budgeted which incorporate both transmit and 
receiver equalisation and utilise adaptive algorithms.   
To ensure interoperability the transmitter is controlled by defining an eye mask which limits the 
Gaussian and High Probability Jitter and ensures a certain signal amplitude.   
Defining the channel as the combined forward response and �all� significant crosstalk responses, the 
cascaded channel with a representative transmitter and receiver return loss is defined as being compliant 
if the resultant �StatEye� for a worst case transmit signal and an ideal receiver DFE filter meets a worst 
case eye mask i.e. it has an amplitude and a GJ and HPJ better than that defined.   
The receiver should be capable of receiving a worst case stressed7 eye with a bit error rate better than 
that required of the system.  Given that the �StatEye� analysis is performed with an ideal DFE and no 
receiver sampling jitter this allows a standard to not impose any ideas or assumptions concerning the 
penalties associated with the implementation.  
A designer of such a receiver should through simulation  

•  estimate the sampling jitter and add this to the transmitter jitter 
•  estimate the DFE penalties and adjust the cursor set 
•  recalculate the �StatEye� using the total sampling jitter is then verify that the reciever�s 

sampler is capable of receiving it.  
The �StatEye� therefore uses the Dual Dirac model only as a means of quantifying the jitter present at 
certain points in the system without relying upon the invalid Dual Dirac �addition� of GJ and HPJ over a 
bandlimited channel.  Because the �StatEye� is not defining an exact implementation of the channel but 
merely and overall performance of the channel, it allows the PCB implementer to trade-off certain 
parameters against each other e.g. channel length can be decreased, in turn decreasing attenuation, 
allowing crosstalk to increase. 

Design Example Results 
Channel Description 
Tyco Electronics announced the availability of its HM-Zd Legacy Interoperability Platform in August of 
2003.  This platform provides the industry with a backplane that is representative of the conditions seen 
in typical system vendor environments.  The �Legacy� Platform builds upon Tyco Electronics HM-Zd 
XAUI Interoperability Platform, which the 10Gigabit Ethernet Consortium selected as a common 
platform for interoperability testing in early 2001.   The HM-Zd Legacy Backplane platform is 
conceptually shown in Figure 19.  It consists of 2 line cards that provide SMA access and the Z-PACK 
HM-Zd based backplane.  Each line card is 0.093� (nominal) thick, consists of 14 layers, and is 
fabricated using Nelco 4000-2 material.  There are four signal layers distributed throughout the entire 
stackup where the 100Ω differential geometries are based on 0.006� (nominal) wide traces.  The trace 
length from the SMA to the Z-PACK HM-Zd connector is two inches.  The backplane is 0.200� 
(nominal) thick, consists of 18 layers, and is fabricated using 4000-6 material.  There are six signal 
layers distributed throughout the entire stackup where the 100Ω differential geometries are based on 
0.0055� (nominal) wide traces.  On the backplane there are three sets of trace lengths � 1�, 16�, and 30�.  
Thus, for the platform there are overall system lengths of 5�, 20�, and 34�.  



 
Figure 19 � XAUI HM-Zd Interoperability Platform  

 
Figure 20 - Differential coupling on XAUI channel pulls impedance down 

Differential Impedance Analysis 
In high-speed digital interconnects, crosstalk between adjacent transmission lines is usually undesirable. 
However, there is one notable exception to this case � that is when we are designing differential 
transmission lines. The strong coupling of adjacent PCB traces that make up a differential pair is exactly 
what is needed to achieve good common mode noise rejection. So when targeting a specific differential 
impedance of 100Ω, this coupling has to be taken into account. An example of this can bee seen in the 
impedance profiles in Figure 20.  The single-ended TDR trace shows that the daughter card and 
motherboard exhibit around 55 �56Ωof single-ended impedance (only one line is driven, the other line is 
quiet and the impedance is measured from the driven line to ground). The differential TDR trace shows 
the effect of coupling on the motherboard traces and yields about 100-101Ω (both lines are driven with 
equal amplitude/opposite polarity steps and impedance is measured from line 1 to line 2). Notice that the 
daughter card differential impedance does not pull down to the target differential impedance of 100Ω. 
This indicates weaker coupling on the differential traces due to larger spacing between daughter card 
traces. 



Mode Conversion Analysis 
When a differential signal is propagating through an ideal differential transmission line, there 
theoretically should be no other mode transmitting. If there is anything that is different on one line of the 
differential channel from the other line of the differential channel, then we have something called mode 
conversion. This will result in EMI problems, the severity of which depends upon the type of mode 
conversion and application. 
Mode conversion relating to high speed digital channels can be grouped into two categories: mode 
conversion caused by active devices and mode conversion caused by passive devices. An example of 
active device mode conversion would be if a differential transmitter or amplifier had one drive signal 
different from the other supposedly complementary drive signal, either voltage, current or skew. An 
example of a passive device mode conversion would be if a differential connector had different 
characteristic impedance lines, different length pins, or different loading on each line such as ground 
plane discontinuities. In any case, mixed mode analysis can be a powerful tool in locating obstacles that 
limit  the highest possible data rate transmission  in interconnects. 
As seen in Figure 21, the differential-to-common mode conversion can be quantified as a percentage of 
amplitude by overlaying the forward time domain transmission waveform (TDD21) with the forward time 
domain transmission mode conversion waveform (TCD21). As expected, TDD21 shows the propagation 
delay and rise time transition of the degraded signal at the output of the device under test. The resulting 
measurement is the mode conversion waveform showing 7% of the original signal. 

 
Figure 21 - Measuring forward time domain transmission (TDD21) and superimposing differential-to-common 

transmission mode conversiuon yields an indication of EMI radiation 



CMOS 0.13um Design Case 
A typical 0.13um pure CMOS design is capable of implementing a multiple transceiver channels on one 
piece of silicon. This typically can lead to problems of crosstalk which limit the maximum performance 
achievable. For the purpose of comparison two links shall be analysed: 

1. a 3.125Gbps XAUI transceiver with emphasised transmitter and traditional receiver  
2. a 6.25Gbps transceiver with 5 tap DFE receiver  

For the purpose of analysis of the channel the electrical characteristics defined in Table 1 shall be 
assumed 

 
Table 1 � Assumed Electrical Characteristics 

StatEye Analysis 
The return loss model of the transmitter, Figure 22, and receiver is a smooth response defined by a 
simple parallel resistor with 60Ω and a capacitor such that the return is just violating the specification at 
¾ the baud rate. The return loss of the channel returns a large amount of energy that increases the 
reflections and resonances of the forward transfer function.  
The pulse response of the forward channel, Figure 23, can be seen to contain post cursors out to 53UI 
(+7UI) for 6.25Gbps compared to the 3.125Gbps, highlighting the need for additional receiver 
equalisation. The influence of reflections at 6.25Gbps can be seen in the tail at 56UI which are enhanced 
due to the non-ideal return loss of the transmitter and receiver.  



 
Figure 22 - Sdd21 with Return Loss of 6.25Gbps Link 

 
Figure 23 - Pulse Response for 3.125 Gbps and 6.25 Gbps NRZ Transmit Pulse 

Although no crosstalk measurements were available two crosstalk models were generated from the 
SDD11, Figure 24, to show the influence of return loss, transmit emphasis and DFE. The crossover of the 
return loss and forward channel for the -30dB crosstalk example is already at ¾ the baud rate for 
6.25Gbps demonstrating that a simple analog bandwidth enhancement filter would additionally boost the 
crosstalk. 



 
Figure 24 - -30dB & -40dB Generated Crosstalk Transfer function 

After allowing the �StatEye� script to optimise the transmit emphasis coefficients8, the resulting eye and 
bathtub, Figure 25, for the required Q, has an amplitude of 88mVsepp (0.22 normalised to the transmit 
amplitude) with a Gaussian Jitter of 0.014UIrms and High Probability Jitter of 0.265UIpp. When using 
the total sampling jitter for the calculation of the �StatEye�, Figure 26, the effect of the receiver jitter 
can be seen to decrease the amplitude of the signal to 52mV (0.13) and increase the jitter to 0.020UIrms 
and 0. 397UIpp. It can be seen that the additional receiver jitter does not add classically using dual dirac 
theory again, clearly demonstrating the need for the �StatEye� methodology. 

 
Figure 25 - 3.125Gbps StatEye & Bathtub with only Transmit Jitter 



 
Figure 26 - 3.125Gbps StatEye & Bathtub with Total Sampling Jitter 

As the baud rate is increased to 6.25Gbps the increased width of the pulse response causes the �StatEye� 
without additional equalisation to close. Using again an optimisation script for find the coefficients of 
the DFE the �StatEye� is calculated for the Total Sampling Jitter and -40dB crosstalk.  The resultant 
eye, Figure 27, for the required Q, has an amplitude of 50mV (0.125)with 0.022UIrms and 0.196UIpp 
jitter, which corresponds to the requirements of the sampler. It should be noted that the worst case 
�StatEye� does not represent a single worst case signal as this would correspond to a bit period of 49ps. 
As the crosstalk is increase to -30dB a loss in eye opening is incurred, Figure 28, however unlike a time 
continuous filter the loss of amplitude is linear and not emphasised and would still allow a workable 
system. 

 
Figure 27 - 6.25Gbps StatEye & Bathtub with Transmit Jitter and -40dB Crosstalk 



 
Figure 28 - 6.25Gbps StatEye & Bathtub with Transmitter Jitter and -30dB Crosstalk 

Conclusion 
In this paper we have outlined the �Legacy� Methodology used by XAUI and explained under what 
conditions limitations become unacceptable as the channel is pushed to its limit either in terms of speed 
or bit error rate. The �StatEye� methodology was then introduced, explaining how the statistical 
methodology in combination with the use of the full s-parameter information of the forward channel and 
crosstalk aggressors enables the limitations to be overcome. A small explanation of the way in which the 
�StatEye� fits into the entire Standards and Interoperability picture showed how no additional 
requirements of the engineer is required in terms of hardware and also the problems of measuring 
�closed� eyes are circumvented. Finally an example of how a typical legacy channel can be measured 
with available equipment was demonstrated, pointing out typical problems using the frequency and time 
domain representation and ending with the �StatEye� results showing that for 6.25Gbps operation such a 
channel, given the appropriate circuitry, would be sufficient for bit error operation well below a bit error 
rate of 10-15. 
The �StatEye� methodology appears initially to be quite complex however in comparison to any typical 
simulation tool it is quite straight forward, demonstrated by its simple implementation in Matlab. 
Alternative methods using time or frequency domain analysis would seem to be able to give a similar 
result but care must be taken as the very low probability events are not possible to represent due to the 
very long simulation times required e.g. 1510100 −⋅ bits for a bit error rate of 15101 −⋅ . 
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