Feasibility of Unretime 100Gbase-SR4

IEEE 802.3bm Task Force

Broadcom Corporation

Jan 22-23, 2013

Phoenix, AZ

List of Supporters

- Brad Booth Dell
- Ahmet Balcioglu Hittite
- Piers Dawe IPtronics
- Oren Slea Mellanox

Overview

- Material presented here previously have been presented at one or more of the following venue
 - 100GNGOPTX task force
 - http://www.ieee802.org/3/bm/public/nov12/ghiasi_02_1112_optx.pd
 - <u>'Feasibility of Unretimed 100 GbE Based on 4x25. 78 GBd</u>',OWJ1.2, OFC 2012
 - IEEE Photonic Interconnect, 'Enabling 850 nm VCSEL for 100 GbE Applications, Santa Fe, 2012
- There has been renewed interest in the low cost, low power, unretime cPPI-4 interface for 20-30 m SR4 application and this presentation explores
 - Meeting transmitter TP1a jitter requirement
 - Example channels meeting cPPI-4
 - How to make limiting interface
- The key questions are
 - Does the 20 m SR4 PMD interoperate with 100 m SR4 PMD
 - Is FEC required
 - Is the interface limiting or linear

802.3bm Objective

- 802.3bm objective defines PMD for operation up to 100 m which is retimed and uses FEC
- The 20 m objective was to included to define lower power, cost, and size driven by data center applications
 - How do we address 20 m reach objective
- Define re-timed 4-lane 100G PMA to PMA electrical interfaces for chip to chip and chip to module applications
- Define a 40 Gb/s PHY for operation over at least 40 km of SMF
- Define a 100 Gb/s PHY for operation up to at least 500 m of SMF
- Define a 100 Gb/s PHY for operation up to at least 100 m of MMF
- Define a 100 Gb/s PHY for operation up to at least 20 m of MMF

Applications Reference Diagram

- Adding retimers increases the 100Gbase-SR4 power dissipation by ~2x
- To support 100GBase-CR4 a retimer already exist in close proximity of the module

Suitable Channel for Unretime Application

Channel has 7.4 dB loss at Nyquist

Far End Eye

 Measured and simulated eyes are good enough to drive the optics with <0.28 UI of TJ at TP1a similar to SFP+!

Summary

- To make transmitter meeting DDPWS and J2 requirements the cPPI-4 channel would have to be ~ 7 dB instead of 10.5 dB in case of CAUI-4
 - Still have 4 dB of host PCB allocation which equates to ~5" on Megtron-6
- In case of limiting interface an additional ~ 0.1 UI of transmit and ~ 0.1 UI of receive jitter must be must be found and the source of the improvement are
 - Reduction of fiber reach from 100 m to 20-30 m.
 - Improvement of the SerDes
- To make linear module receiver work
 - Crosstalk does add some penalty but the fact one the host can now equalize for the fiber/Laser there is net gain
 - This interface DFE as result of MTTFPA the interface require at least FEC encoder and we might as well turn on
- With addition of FEC both limiting and linear interface become very feasible
- If we don't define unretime interface in this group it will be define by MSA's

IEEE 802.3bm

Thank You