In support of PSM4 for 100GbE

Presenter: Kapil Shrikhande, Dell 802.3bm Task Force meeting July 2013

Contributors and supporters

- Tom Issenhuth, Microsoft
- David Warren, HP
- Kapil Shrikhande, Dell
- John D'Ambrosia, Dell
- Oren Sela, Mellanox
- Oded Wertheim, Mellanox
- Piers Dawe, Mellanox
- Rick Rabinovich, Alcatel-Lucent
- Mike Dudek, Qlogic
- Scott Kipp, Brocade
- Andy Bechtolsheim, Arista
- John Petrilla, Avago
- Tom Palkert, Molex
- Brian Welch, Luxtera
- Kiyo Hiramoto, Oclaro
- David Lewis, JDSU
- Arlon Martin, Kotura

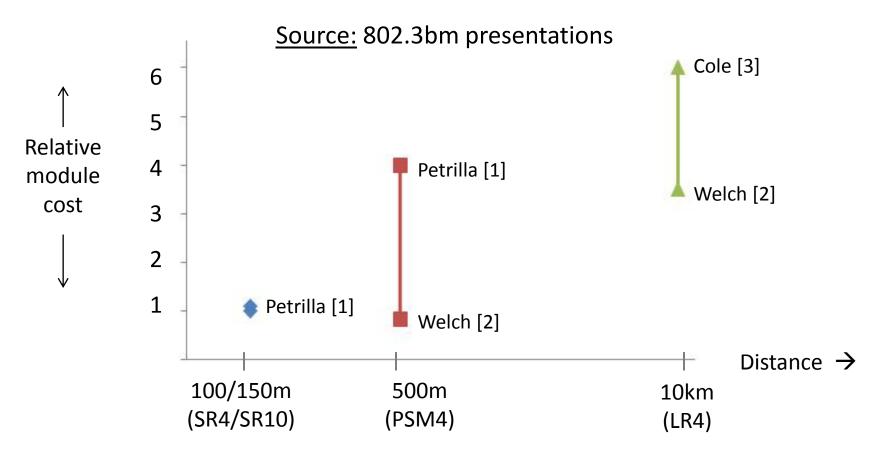
Paul Kolesar, Commscope Rick Pimpinella, Panduit Steve Swanson, Corning Sharon Lutz, US Conec Alan Ugolini, US Conec Adit Narasimha, Molex Jack Jewell, CommScope Stephen Bates, PMC-Sierra

Data-center > 100m need

- Data-centers have evolved around the 300m 10G-SR reach over MMF for intra-DC, with SMF for interbuilding / campus
- Reach challenges became apparent soon after 40/100GE introduction
- At 40GE, partly solved by introduction of proprietary ~300m MMF QSFP+
 - Initial use 4x10GE, then for 40GE once both ends move to 40GE
- Interest in use of 40G-LR4 and emergence of PSM4 technology for intra-DC
- At 100GE, no solution between SR10 (150m) and LR4 (10km) reach; larger step in cost from MMF to SMF solution

Data-center > 100m need

- 100GE 500m objective set with intra-DC links in mind
- Solution that addresses 500m, and is cost-optimized for shorter reaches (where larger volume of links resides) is most attractive
 - Link distributions in <u>kipp_01_0112_NG100GOPTX.pdf</u>, <u>kolesar_02_0911_NG100GOPTX.pdf</u>
 - Cost-centroid length concept in <u>kolesar_01b_0512_optx</u>
- Need does not end at 100GE. Same set of questions at 400GE and 4x100GE
 - 400GE Study Group underway
 - Decision in 802.3bm has impact well into the future

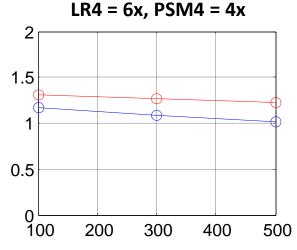

500m objective - where are we

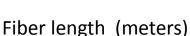
- 6 Task Force meetings (including this one), 6
 Study Group meetings, 22 SMF Ad Hoc meetings
- Large number of presentations
- Solutions under consideration: CWDM, DMT, PAM8, PSM4
- This meeting likely the last opportunity to pick a 500m SMF proposal in 802.3bm

Why PSM4?

- Lowest cost module likely to be PSM4
 - welch_01b_0113_optx, petrilla_03a_0113_optx, cole_01_0313_optx, shen_01a_0313_smf
- Lowest link cost for multiple scenarios in the <= 500m application space
 - shrikhande_01_0613_smf.pdf, welch_02_0613_smf.pdf
- Lowest power module likely to be PSM4
 - anderson_01_1212_smf.pdf, welch_01_0313_optx.pdf, petrilla_03a_0113_optx.pdf
- Smallest 100G module FF (QSFP28) in nearer-term, at lowest risk
 - Power -> Density -> Cost
- Broad support from module manufacturers
 - Implementations feasible in near-term

Modules relative costs vs. Reach (assuming SR4/10 → PSM4 → LR4)


^[1] petrilla_03a_0113_optx : SR4 CFP4 (1.1x), PSM4 CFP4 (4x)


^[2] welch 01b 0113 optx: PSM4 (0.82x) and LR4 QSFP28 (3.5x) using SiPh

^[3] cole_01_0313_optx : LR4 CFP4 Gen3 (6x)

Link cost analysis: PSM4 and LR4

LR4/PSM4 Link Cost Ratio

- LR4/PSM4 ratio ~ 1 (equal cost) for cable cost #2
- LR4/PSM4 ratio ~ 1.3 @ 300m for cable cost #1

LR4 = 6x, PSM4 = 0.82x

Diff. cabling costs

Cost # 1 (my low)

Cost #2 (my high)

500

Fiber length (meters)

300

 LR4/PSM4 ratio > 2 for both cable costs (PSM4 links significantly cheaper)

400

 Cabling cost clearly matters, only a few presentations discussing cabling costs, compared to modules costs

100

200

 Results from cable cost #2 match other analyses in 802.3bm quite well (Cole, Kolesar) – cable cost #2 used for further analysis

Link cost analysis: summary

- PSM4 links are lower cost than LR4 for the target application
- PSM links remain lower cost than WDM (LR4 or CWDM) over a wide range of WDM module costs
 - Duplex WDM v. parallel cost in shrikhande_01_0613_smf.pdf
- PSM4 provides lowest cost at shorter reaches where larger volume of links reside
- PSM4 remains the lower cost alternative for the application space over a long period of time

Module power / size

- Lowest power module likely to be PSM4
 - LISEL based PSM4 transceiver not including CDR ~ 2W (anderson_01_1212_smf.pdf)
 - Si Photonics based re-timed PSM4 module < 2.5W
 (welch 01 0313 optx.pdf)
 - DFB discrete TOSA based re-timed PSM4 module ~
 3.76W (<u>petrilla_03a_0113_optx.pdf</u>)
- Technology and power projections indicate strong probability of fitting in smallest FF -- QSFP28

Market potential for PSM4

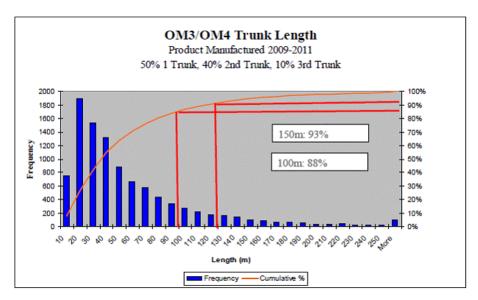
- Increasing use of parallel starting with 40GE
 - Use of parallel MMF > 150m likely at 40GE (~300m QSFP+)
 - Use of PSM technology for 4x10G, and for 40G when link cost lower than 40G-LR4 (or when cabling is present)
- PSM4 + LR4 provides a more distinct choice to users compared to CWDM + LR4
 - Users can leverage different cost trade-offs for Parallel v.
 Duplex: lower cost in modules, higher cost in cabling
- Broad support from module manufacturers
- Availability of modules in the near term is expected
- Systems integrators interested in supporting PSM4
- Opportunity to standardize PSM4 and ensure inter-op!

Looking beyond 100GE

 Adopting PSM4 for the 100GE 500m objective directly helps with the introduction of 400GE in the data-center

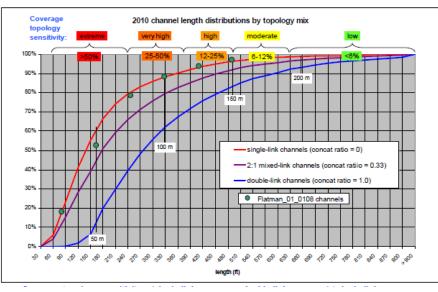
```
- E.g.1: PSM4 + LR4
```

- E.g.2: PSM4 + Serial 100G


 PSM infrastructure is a building block for 400GE and necessary for 4x100GE breakout in the datacenter

Summary

- PSM4 has great potential for driving down cost in the target application space
 - Module cost, link costs, power, density
- Having PSM4 + LR4 provides more choice to the DC user and will enhance 100GE market potential
- PSM4 has broad support from the eco-system
- PSM infrastructure will play an important role in introduction of 400GE and high-density 100GE
- Recommend that 802.3bm adopt the PSM4 baseline proposal for the 500m SMF reach objective

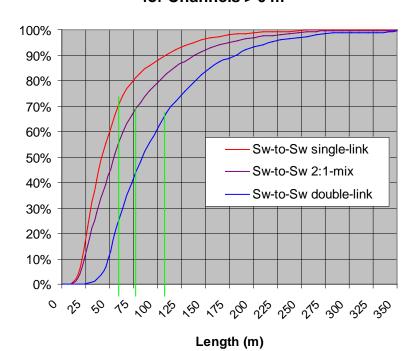

BACKUP

Data-center links statistics: snapshots

Source: Corning data from kipp 01 0112 NG100GOPTX.pdf

At least 10% links beyond 100m

Source: kolesar 02 0911 NG100GOPTX.pdf

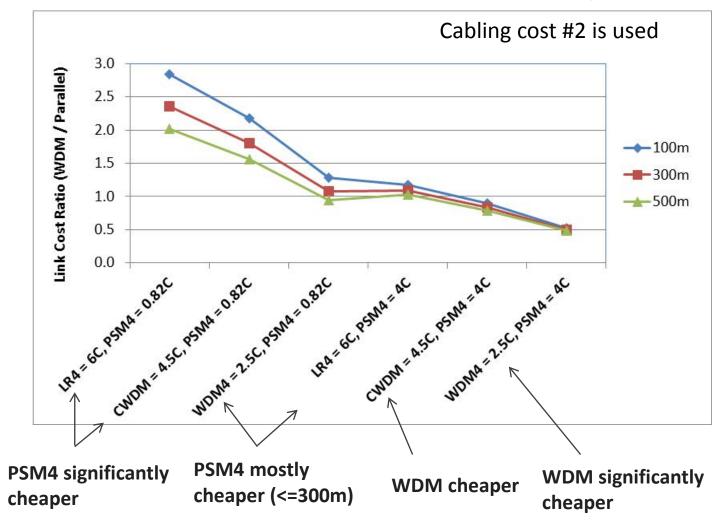

- 10% single-link channels beyond 100m
- Also seen in flatman_0108 channels
- 20-40 % of double-link channels > 100m depending on double-link model

Cost-centroid length

Cost-Centroid Lengths [m]

Length Selection	Switch-to-Switch Channels		
Single-mode deployed for	Single Link	2:1 Mix Link	Double Link
All Lengths	59	75	106
> 100 m	148	157	163

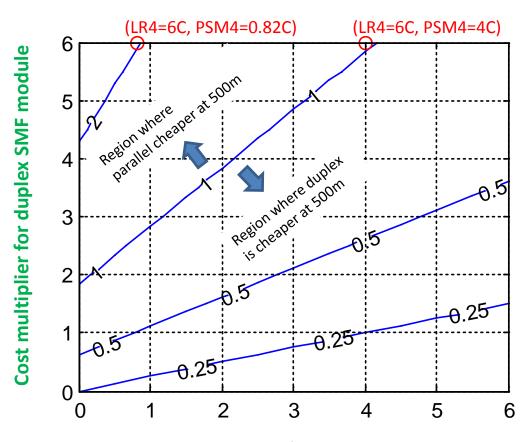
Data Center Channel Length CDFs and Cost Centroid Lengths for Channels > 0 m


source: kolesar_01b_0512_optx

Link cost analysis (1)

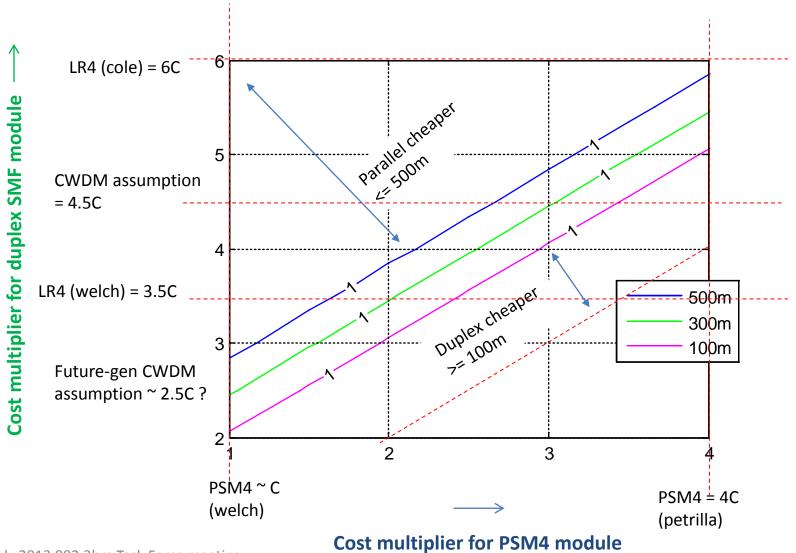
- Analysis method : similar to cole_01b_0213_smf
- Total link cost ratio = (2*Duplex module + 2f_DL) / (2*Parallel module + 8f_DL)
- Double Link model as described by P. Kolesar
 - Exception: MPO-LC cassettes, MPO-LC cables (PSM module),
 LC-LC cables (duplex module) used at end points
- Assumed 24f trunk cables: carries 3 x PSM4 circuits or 12 x duplex circuits
- 2 cabling costs considered
 - #1) my low end : chose lower cost cabling components
 - # 2) my high end : chose higher cost cabling components
- Module relative cost used next slide

Link cost


Different scenarios of WDM and PSM relative module costs (from earlier slide) show PSM4 links can be cheaper in many scenarios

Link cost analysis (2)

- The cost ratio of a WDM (or any duplex) SMF link to parallel SMF link can be calculated more generally, as a function of the duplex module and parallel module costs
- Duplex module relative cost = X = C * (0, 0.5, 1.0, ... 6)
- Parallel module relative cost = Y = C * (0, 0.5, 1.0, ... 6)
 - Where C = SR10 CXP cost
- Calculate matrix of link cost ratio (duplex/parallel) for above X, Y values of module costs
- From the matrix data, trace contour lines on a X-Y plot
 - For e.g. contour lines where duplex/parallel link cost ratio = 0.25, 0.5,
 1.0, and 2.0 are plotted on next slide for 500m cable length


Contour plot for 500m SMF

- As a reference, the two points (red circles) match the LR4/PSM4 ratio plotted on slide 5
- Line marked "1" is contour line of equal cost (duplex link = parallel link)
 - Parallel is cheaper above "1" line
 - Duplex is cheaper below the "1" line

Cost multiplier for PSM4 module

Link cost analysis: parallel v. duplex

