

Loss Budgeting for Single-mode Channels

Paul Kolesar CommScope Feb 19, 2013 IEEE P802.3bm SMF Ad Hoc

Purpose and Approach

- To define a loss budget that
 - is appropriate for single-mode fiber data center channels up to 500 m in length
 - addresses differences between 2-fiber and parallel optics connectivity
 - supports double-link channels
 - supports the attenuation of cable constructions used inside buildings
- Use statistical approach
 - Following the lead from previous contribution to P802.3ba

Double-link cabling channels

Channel Connectivity Characteristics

- Examining previous diagram we see that
 - 2-fiber channels have 8 connections
 - 4 LCs + 4 MPOs
 - Owing to the use of MPO pre-terminated cabling that employs fan-out cassettes
 - Parallel optic channels have 4 connections
 - 4 MPOs
 - Fan-out cassettes are not used

Connection Insertion Losses (1 of 5)

•

120

110

100

90

80

70

60

50

40

30

20

10

0

Frequency

mean loss=0.22 dB, s.d.=0.134 dB

mean loss=0.421dB, s.d.=0.187dB

Contribution king 01 0508 to P802.3ba

- Insertion loss represented by **Rayleigh distribution**
- Employed Monte Carlo method to sum connection losses

120%

110%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Frequency

Cumulative %

3 connectors loss pdf

3 Connector Loss Histogram

mean loss=0.631 dB, s.d.=0.221 dB

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Loss

Connection Insertion Losses (2 of 5)

Statistical characteristics comparison of king_01_0508 and Normal statistics

# conn.	King_01_0508		Normal Stats	
	Mean	Std. Dev.	Mean	Std. Dev.
1	0.220	0.134	0.220	0.134
2	0.421	0.187	0.440	0.190
3	0.631	0.221	0.660	0.232
4	0.842	0.264	0.880	0.268

Start with the same values

- Means and Standard Deviations agree to within 5%
 - Good cross-check
 - Normal statistics can substitute for Monte Carlo simulation
- Normal statistics will be used going forward here
 - Their slightly higher values will help account for the accelerating trend of loss vs. offset not included in king_01_0508

Connection Insertion Losses (3 of 5)

- king_01_0508 asserted that 1.5 dB was sufficient to support 4 multimode MPO connections
 - 1.6% of connections would exceed 1.5 dB -
 - Represents +2.5 std. dev. point in distribution
 - 0.842 + 2.5×0.264 = 1.5 dB
 - Represents +2.3 std. dev. in Normal dist.
 - 0.880 + 2.3×0.268 = 1.5 dB

• mean loss=0.842 dB, s.d.=0.264 dB

• 95%<1.3dB loss, 98.4%<1.5 dB loss

Accepting Jonathan's assertions, all we need to know are the means and standard deviations for MPOs and LCs.

Sounds trivial, but...

Connection Insertion Losses (4 of 5)

- Connection loss is specified with various terms
 - Typical, average, maximum, sometimes mean & std. dev.
- And differing conditions
 - Random mate to like product
 - When mated to a reference-grade plug
 - When "tuned" (i.e. iteratively clocked for optimum alignment)

But what we need are practical values for common data center deployments.

So here goes...

Connection Insertion Losses (5 of 5)

- Connection loss should be modeled using random-mate statistics for un-tuned assemblies
 - Random-mate stats represent actual deployment conditions
 - Un-tuned terminations are lower in cost and commonly used in DCs
- Good starting place for single-mode LCs

– Mean = 0.20 dB; Std. Dev. = 0.15 dB

- Good starting place for single-mode MPOs
 - Mean = 0.35 dB; Std. Dev. = 0.25 dB

Using these values at +2.5 standard deviations we get:

2.65 dB for 4 MPOs3.66 dB for 4 MPOs + 4 LCs

Note: these values are ~0.1 dB higher than what I stated on the reflector because I had used 2.3 standard deviations, but should have used 2.5 as in king_01_0508

Adding Cable Attenuation

- TIA 568 and ISO 11801 (and their related data center cabling counterparts) are predominantly used for premises and data center cabling specifications
 - Both specify single-mode cable attenuation that is dependent on construction
- TIA:
 - outside plant: 0.5 dB/km max @ 1310 nm, 1550 nm
 - indoor/outdoor: 0.5 dB/km max @ 1310 nm, 1550 nm
 - indoor: 1.0 dB/km max @ 1310 nm, 1550 nm
- ISO:
 - OS1 (original spec that included inside plant): 1.0 dB/km max @ 1310 nm, 1550 nm
 - OS2 (added to support 10 km outside plant applications): 0.4 dB/km max @ 1310 nm, 1383 nm, 1550 nm
- Advisable to use <u>at least</u> 0.5 dB/km for cabling that will often serve indoor deployments

Adding 0.25 dB for 500 m of cable attenuation to connection loss gives:

2.90 dB for parallel optics3.91 dB for 2-fiber channels

These are recommended minimum budgets. Greater budgets will enable more flexibility in channel design regarding topologies and cable type.

Closing Perspectives

- The 100G-LR4 spec provides 6.3 dB of loss budget for 10 km reach
- These 500 m loss budgets are substantially smaller
 - Should enable cost reduction
- However, if trimmed further they will lose utility
 - Our efforts will be in vein
- Do not follow precedent of allocating only 2 dB connection and splice loss
 - Worked in past because substantial power was also allocated to overcome attenuation of cabling, e.g. at least 4 dB for 10 km reach
 - This attenuation budget is traded for insertion loss budget within data centers
 - This luxury will not be afforded to the short-reach solutions we are defining

Q & A