

PSM4 vs. WDM : A Silicon Photonics Perspective

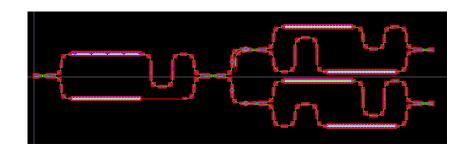
Brian Welch

Comparative Analysis

- Link Budget: What are the net link budget differences between PSM4, LR4, and CWDM.
 - Includes any component level differences than induce optical loss.
- Power: What power targets are achievable for each, and by extension what form factors.
 - Are they QSFP compatible?
 - Assumes fully integrated silicon photonics solution using 28nm (or better) CMOS node.
- Assembly and Cost: How does CWDM fit into the XCVR cost mix.
 - Can it be integrated into existing silicon photonics technologies?
- Caveat: For Link budget and power sections temporarily assuming infinite optical bandwidth on grating couplers.
- Caveat: Where applicable, preference is to err on the side of generous to WDM solutions.

Link Budget

Comparison


WDM in Silicon Photonics

Optical Multiplexor:

- Two Configurations:
 - Optical combiner
 - o Interleaver
- Optical combiner is zero power,
 but high loss (> 6dB)
- Interleaver is lower loss, but consumes power:
 - o Approximately 3 dB insertion loss for 4 λ
 - Approximately 600mW for thermal tuning
 - » Tuning based on carrier injection possible, but with higher losses

Optical De-Multiplexor:

- Interleaver based design
- Requires two interleaver demultiplexors
 - One for each polarization
- 3 dB insertion loss
- Approximately 1200 mW power consumption

Link Budget Differences

Loss Budget [†]	PSM4	CWDM	LR4
Connector Losses	2.65 dB	3.66 dB	2 dB
Fiber Attenuation (500 m)	0.25 dB	0.25 dB	
Excess Fiber Attenuation (500m-2 km)	N/A	0.75 dB	4.3 dB
Excess Fiber Attenuation (2 km - 10 km)	N/A	N/A	
Total Loss Budget	2.90 dB	4.66 dB	6.3 dB
Components	PSM4	CWDM	LR4
WDM Mux	N/A	3 dB	3 dB
WDM Demux	N/A	3 dB	3 dB
FEC	PSM4	CWDM	LR4
No FEC	N/A	2.6 dB	2.6 dB

Note: CWDM projections above exclude excess grating coupler losses due to wide optical bandwidth required, which could be 10+ dB. Discussed more later in presentation.

[†] Loss figures from: Kolesar 01 0213 smf.pdf

Link Budget Differences

Totals	PSM4	CWDM	LR4
With FEC at 500m	2.90 dB	9.91 dB	N/A
With FEC at 2 km	N/A	10.66 dB	N/A
Without FEC at 2 km	N/A	13.26	N/A
Per baseline proposals (aggregate)	2.90 dB	13.26 dB	14.9 dB

- WDM solutions are <u>at least 7 dB worse</u> link budget than PSM4.
 - Net of fiber plant and module component losses.
- For 2 km non FEC operation a CWDM module will have to overcome 10.36 dB additional losses compared to PSM4.
 - LR4 at 10 km is 12 dB higher total loss than PSM4

Note: CWDM projections above exclude excess grating coupler losses due to wide optical bandwidth required, which could be 10+ dB. Discussed more later in presentation.

Power

QSFP Compatibility

Power Consumption – Dual Retimed Solutions

Transmitter (x4 per component) (mW)	PSM4	CWDM	LR4
Module Equalizer (CTLE)	120	120	120
Transmitter CDR	420	420	420
Transmitter/MZI	440	540	540
Optical Mux	0	600	600
Laser +TEC	200	800	2200
Receiver (x4 per component) (mW)	PSM4	CWDM	LR4
Optical DeMux	0	1200	1200
TIA	200	280	280
Receiver CDR	420	420	420
Output Driver	100	100	100
Total (mW)	PSM4	CWDM	LR4
Module Auxiliary	20	20	20
Module Total Power - Nominal	1920	4500	5900
Module Total Power – Worst Case	2496	5850	7670

Note: CWDM projections exclude excess grating coupler losses due to wide optical bandwidth required, which could be 10+ dB. Discussed more later in presentation.

Power Consumption – Single Retimed Solutions

Transmitter (x4 per component) (mW)	PSM4	CWDM	LR4
Module Equalizer (CTLE)	120	120	120
Transmitter CDR	420	420	420
Transmitter/MZI	440	540	540
Optical Mux	0	600	600
Laser + TEC	200	800	2200
Receiver (x4 per component) (mW)	PSM4	CWDM	LR4
Optical DeMux	0	1200	1200
TIA	200	280	280
Receiver CDR	0	0	0
Output Driver	100	100	100
Total (mW)	PSM4	CWDM	LR4
Module Auxiliary	20	20	20
Module Total Power - Nominal	1500	4080	5480
Module Total Power – Worst Case	1950	5304	7124

Note: CWDM projections exclude excess grating coupler losses due to wide optical bandwidth required, which could be 10+ dB. Discussed more later in presentation.

Power Consumption – Non Retimed Solutions

Transmitter (x4 per component) (mW)	PSM4	CWDM	LR4
Module Equalizer (CTLE)	120	120	120
Transmitter CDR	0	0	0
Transmitter/MZI	440	540	540
Optical Mux	0	600	600
Laser + TEC	200	800	2200
Receiver (x4 per component) (mW)	PSM4	CWDM	LR4
Optical DeMux	0	1200	1200
TIA	200	280	280
Receiver CDR	0	0	0
Output Driver	100	100	100
Total (mW)	PSM4	CWDM	LR4
Module Auxiliary	20	20	20
Module Total Power - Nominal	1080	3660	5060
Module Total Power – Worst Case	1404	4758	6578

Note: CWDM projections exclude excess grating coupler losses due to wide optical bandwidth required, which could be 10+ dB. Discussed more later in presentation.

Power Consumption Summary

- WDM solutions cannot reasonably fit inside QSFP thermal envelope
 - 100GBase-LR4 module with Caui-4 over 7.6 W.
 - o 100GBase-LR4 non-retimed module over 6.5 W.
 - 100G-CWDM module with Caui-4 over 5.8 W.
 - o 100G-CWDM non-retimed module over 4.7 W.
- PSM4 can fit inside the QSFP thermal envelope
 - 100GBase-PSM4 module with Caui-4 less than
 2.5 W (class III)
 - 100GBase-PSM4 with single retimer less than
 2.0 W (class II)
 - 100G-Base-PSM4 non-retimed less than 1.5 W (class I)

Note: CWDM projections exclude excess grating coupler losses due to wide optical bandwidth required, which could be 10+ dB. Discussed more later in presentation.

QSFP Power Classes:

Class I: 1.5 W max

Class II: 2 W max

- Class III: 2.5 W max

Class IV: 3.5 W max

Assembly and Cost

The Achilles heel of CWDM

Silicon Photonics Coupling Techniques

Surface Coupling

• Pros:

- Does not violate CMOS design rules (guard ring)
- Does not require CMOS post-processing (precision dice/polish)
- Enables full OE wafer scale testing
- Enables easy fiber attach
 - Large area for bonding to CMOS
 - Bonding footprint not a function of IC thickness
 - Metal alignment fiducials for vision systems
- Allows for higher density of couplers (2d Array)
- Can separate out separate polarizations from a standard SMF.
- Already in high volume production
 - Millions of grating couplers already shipped

Cons:

- Finite optical bandwidth (approx. 30 nm 3dB BW)
 - Parabolic roll-off, > 10 dB loss at 60nm BW

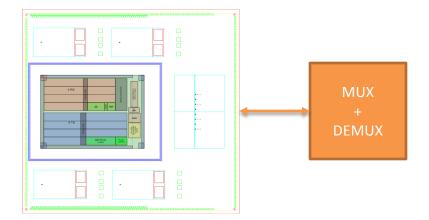
Edge Coupling

• Pros:

Theoretically Larger optical bandwidth

• Cons:

- Violates CMOS design rules (guard ring)
- Requires precision post processing to create coupler interface
- Does not allow for full OE wafer scale testing
- Fiber attach extremely difficult
 - o Very little area available for a CMOS bond
 - o Inability to employ metal alignment fiducials
 - Thin IC height likely require additional packaging layers/steps for integrated solution
 » Prohibiting chip on board cost reductions
- Couplers restricted to a single row
- Couplers can not separate out different polarities
 - Mandates polarization maintaining fiber or more complex receiver design.
- Not yet in production


Options for CWDM with Silicon Photonics

- Surface Coupling with External Mux/Demux
 - Need to integrate external filter, and have another fiber boundary
- Edge Coupling with Internal Mux/Demux
 - Can theoretically integrate Mux/Demux function

CWDM Chipset Costs

Surface Coupling

- Similar to LR4 chipset, but with added parallel fiber interface
 - Increase in area of approximately10%
- Addition of external MUX/DEMUX
 - Assuming net cost equivalent to silicon photonics IC cost

Edge Coupling

 Insufficient technology maturity to reasonably project costs/yields

Cost Comparison

Chipset [†]	PSM4	LR4	CWDM – Surface Coupling
Chipset Only	1.03	2.70	3.54
Chipset with TEC	1.03	3.70	3.54
Cost Relative to PSM4	100%	359%	344%
Module (Un-Yielded)	PSM4	LR4	CWDM – Surface Coupling
Net Relative Cost	1.17	4.23	4.55
Cost Relative to PSM4	100%	361%	389%
Yield	PSM4	LR4	CWDM – Surface Coupling
Optical Attachments	2	5	7
Aggregate Yield (@ 95% per)	90%	77%	70%
Module (Yielded)	PSM4	LR4	CWDM – Surface Coupling
Net Relative Cost	1.3	5.49	6.5
Cost Relative to PSM4	100%	422%	500%

[†] from welch_01b_0113_optx.pdf

Summary

- PSM4 the lowest cost solution at under ¼ the cost of either WDM alternative
- CWDM actually has the highest cost floor of any possible solution (using silicon photonics)
 - Five times the cost of PSM4
 - 20% higher cost than LR4
- WDM solutions pose dramatic link budget hurdles compared to PSM4
 - CWDM Penalty: 7 10+ dB worst than PSM4
- PSM4 is the only solution that can fit into a QSFP form factor
 - Depending on host system specification, could even be as low as class I power consumption