Notes on calculating TDP using spreadsheet model

jpk

Figure 52-12—Test setup for measurement of transmitter and dispersion penalty

- TDP is difference in sensitivity measured for the two cases:
 - DUT Tx, with worst case path (or equivalent), into reference Rx (P_DUT)
 - Reference Tx, no path penalty, into reference Rx (S)
- TDP is the greater of (P DUT S), 0.
- Although the reference Tx is considered ideal, it still has a small penalty which should be accounted for in link modeling when trying to extract a TDP value.

Clause 52 Ref Tx

52.9.10.1 Reference transmitter requirements

The reference transmitter is a high-quality instrument-grade device, which can be implemented by a CW laser modulated by a high-performance modulator. It should meet the following basic requirements:

- a) The rise/fall times should be less than 30 ps at 20% to 80%.
- b) The output optical eye is symmetric and passes the eye mask test of 52.9.7.
- c) In the center 20% region of the eye, the worst case vertical eye closure penalty as defined in 52.9.9.3 is less than 0.5 dB.
- d) Jitter less than 0.20 UI peak-peak.
- e) RIN should be minimized to less than-136 dB/Hz
- When scaled for bit rate from 10.3 to 25.8 Gb/s:
 - 20% to 80% rise fall time < 12 ps
 - ≤0.5dB VECP
 - Jitter < 0.2 UI (7.76 ps)
 - RIN_{OMA} < -140dB/Hz
 - assuming a reference Tx would be expected to have a similarly RIN negligible penalty (in fact with FEC, the RIN penalty is still << 0.1 dB at -136dB/Hz).

Example using a spreadsheet model*

 Using the Tx values which just meet scaled values for a reference Tx, the modeled eye closure penalty for the ref. Tx is 0.8 dB (eye corner) or 0.5 dB (centre eye)

The 'eye corner' in the spreadsheet model is set by the X2 coordinate of the Tx mask. Could be used to represent required TP4 eye opening, for example.

X2 sets eye corner

Snapshot

VECP at 2m at centre of eye

Spreads	Spreadsheet by Del Hanson, David Cunningham, Piers Dawe, David Dolfi Agilent Technologies													3.2/3	7	This file	100	GEPBud3	3 1 16a	a.xls	of	17-Oct-	-01
Basics	Input=	Bold			Ts(20-80) 12 ps			Case: 850nm serial			newMMF		Attenuation=		3.5 dB/km		_		- \	of	31-Oct-	-01	
	. Q=	• /		1	s(10-90)				Target Target reach		0.00	0.00 km		at '	850	nm	NomS	ens OMA	-11.10	dBm	Margin	5.02	dB at
Base Rate=		25781	25781 MBd		IN(OMA)	-140 dB/Hz		_				km	C_att=		1.00	, ,	Receive Refl Rx		-12	dB	nswer!		5.002 km
Transmitter		1	1		at MinER	-149.6 dB/Hz		grapi	graph L_inc=		0.0	0.0 km		Attenuation=		3.62 dB/km		Rec_BW=		MHz	es Rx BW	19,336	MHz
Wavelen	ngth Uc	840	nm	RIN	N_Coef=	0.70		Po	wer Bud	lget P=	7.30	dB	1	at '	840	nm	1	c_rx	329	ns.MHz	<u>:_\</u>		
Uw (see	<u>e notes)</u>	0.29	nm		Det.Jitter		ps inc.	DCD	Connec	tions C				min. Uo=		nm	T_r	rx(10-90)	17.0	ps	Test Sour	ce ER=	
	r OMA=		dBm		CD_DJ=				BudCor			dB		sp. So=		ps/nm [^]		TP4 Ey€	.´ 9	ps	Test Tx	6.5	
Min. Ext	t Ratio=	3.00			fect. DJ=		(UI) ex	(DCD	1	C1=	480	ns.MHz	z Dis	<i>s</i> p. D1=	-117.76			Opening	-	*	TestERper	-	dBo
Worst"avo	orst"ave.TxPw <mark>r -2.03 dBm</mark>			MPN	l k(OMA)	,		Reflect	Reflection Noise factor					1		1		eline wander SD		fraction	,		\ '
Ext. ratio	-		dBo		ye height					ive Rate			(no	ot in use)		1	1				V.E.C.P.	0.46	dFo
Tx mask.	1	0.3			Refl Tx		dB			Tb_eff=		ps		BWm=				W(no ISI)		- 1			ressed
ı 📞	X2=	0.39			NoisePen	_	dB	Effe	ective R						#######	MHz*k	<u>.m</u>	P_BLW	0.01				Rx sens
	TT-	0.25			mask top '							P_DJ			CDmnn	Dmnn	Drin	Pcross				Manaia	OMA
L	Patt	Ch IL	D1.L			effBWm								Beta	SDmpn					corners		Margin	
(km)	(dB)	\/		ps/nm		(MHz)	(ps)			\rightarrow $-$	(dB)	(dB)	(dB)	25.00		(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dBm)
0.002	0.01	1.51 1.50				######	18 18	25 25	0.42 0.42	0.21 0.21	0.04	0.25 0.25	0	-6E-03	0.00	0.00	0.01	0.00	0.77 0.8	1.19 1.2	0.8	5.0 5.0	-10.6 -10.6
0.00	0.00	1.50	0.0	0.00		###### #######		25	0.42		0.04	0.25	0	0.00	0.00	0.00	0.01	0.00	0.8		0.8	5.0 5.0	-10.6 -10.6
0.00 0.00	0.00	1.50	-0.1	0.00		#######	18 18	25 25	0.42	0.21 0.21	0.04	0.25	0	0.00	0.00	0.00	0.01	0.00	0.8	1.2 1.2	0.8	5.0 5.0	-10.6
0.00	0.00	1.50	-0.1	0.00	#######	#######	18	25 25	0.42	0.21	0.04	0.25	0	0.00	0.00	0.00	0.01	0.00	0.8	1.2	0.8	5.0 5.0	-10.6
0.001	0.00	1.50	-0.1	0.00		#######	18	25 25	0.42	0.21	0.04	0.25	0	0.00	0.00	0.00	0.01	0.00	0.8	1.2	0.8	5.0	-10.6
0.001	0.00	1.50	-0.1	0.00		######	18	25 25	0.42	0.21	0.04	0.25	o	0.00	0.00	0.00	0.01	0.00	0.8	1.2	0.8	5.0	-10.6 -10.6
0.001	0.00	1.50	-0.1	0.00	#####	#######	18	25	0.42	0.21	0.04	0.25	0	0.00	0.00	0.00	0.01	0.00	0.8	1.2	0.8	5.0	-10.6
0.001	0.01	1.51	-0.2	0.00		#######	18	25	0.42	0.21	0.04	0.25	ŏ	0.00	0.00	0.00	0.01	0.00	0.8	1.2	0.8	5.0	-10.6
0.002	0.01	1.51	-0.2	0.00		######	18	25	0.42	0.21	0.04	0.25	ō	0.00	0.00	0.00	0.01	0.00	0.8	1.2	0.8	5.0	-10.6
0.002	0.01	1.51	-0.2	0.00		######	18	25	0.42	0.21	0.04	0.25	0	-0.01	0.00	0.00	0.01	0.00	0.8	1.2	0.8	5.0	-10.6
0.002	0.01	1.51	-0.2	0.00		######	18	25	0.42	0.21	0.04	0.25	0	-0.01	0.00	0.00	0.01	0.00	0.8	1.2	0.8	5.0	-10.6
0.002	0.01	1.51	-0.3	0.00	#####	#######	18	25	0.42	0.21	0.04	0.25	0	-0.01	0.00	0.00	0.01	0.00	8.0	1.2	8.0	5.0	-10.6
0.002	0.01	1.51	-0.3	0.00	######	#######	18	25	0.42	0.21	0.04	0.25	0	-0.01	0.00	0.00	0.01	0.00	0.8	1.2	0.8	5.0	-10.6
0.003	0.01	1.51	-0.3	0.00	######	#######	18	25	0.42	0.21	0.04	0.25	0	-0.01	0.00	0.00	0.01	0.00	0.8	1.2	0.8	5.0	-10.6
0.003	0.01	1.51	-0.3	0.00	######	#######	18	25	0.42	0.21	0.04	0.25	0	-0.01	0.00	0.00	0.01	0.00	8.0	1.2	0.8	5.0	-10.6
0.003	0.01	1.51	-0.3	0.00	#####	######	18	25	0.42	0.21	0.04	0.25	0	-0.01	0.00	0.00	0.01	0.00	8.0	1.2	8.0	5.0	-10.6