

Implementation tradeoffs for WDM4 PMD in relation to cost

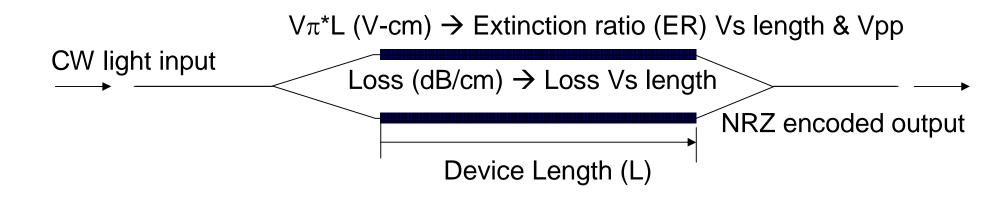
Contributors

Douglas Gill IBM Yurii Vlasov IBM

802.3bm Plenary Meeting, November 13, San Antonio, TX

Introduction

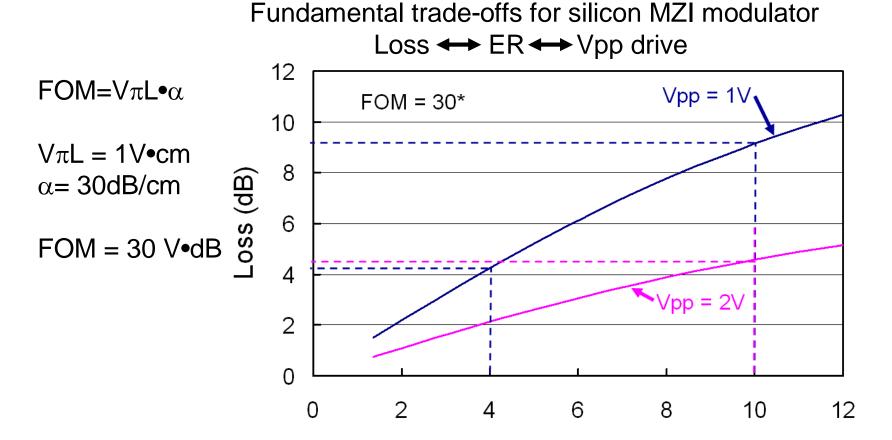
- One of P802.3bm adopted objectives :
 "Define a 100 Gb/s PHY for operation up to at least 500 m of SMF"
- WDM PMD has been proposed as cost-effective solution vlasov_01_0312_NG100GOPTX.pdf vlasov_01_1112_optx.pdf
- Impact of extinction ratio and drive voltage on silicon MZI modulator insertion loss is presented
- Impact of WDM grid on laser cost is considered



Silicon photonics MZI modulator fundamental tradeoffs

Impact on link budget/cost

CMOS Mach-Zender Interferometric (MZI) Transmitter


- Two Modulator Figures of Merit (FOM) used today
 - − FOM₁ = $V\pi^*L$ (V-cm) → Extinction ratio (ER) Vs length → Modulation Penalty
 - FOM₂ = Loss (dB/cm) → Gives loss Vs length → Loss Link Penalty

Using two figures of merits makes it difficult to understand transmitter impact on link penalty*

^{*} D.M. Gill, et. al, A Figure of Merit Based Transmitter Link Penalty Calculation for CMOS-Compatible Plasma-Dispersion Electro-Optic Mach-Zehnder Modulators, http://arxiv.org/ftp/arxiv/papers/1211/1211.2419.pdf

CMOS MZI Modulator Loss Vs ER & Drive Voltage (Vpp)

Example for silicon MZI with FOM=30 V•dB and ER=10dB:

1Vpp driving voltage directly from CMOS → 9dB insertion loss

Extinction Ratio (dB)

^{*} See also backup slides. Reference: D.M. Gill, et. al, A Figure of Merit Based Transmitter Link Penalty Calculation for CMOS-Compatible Plasma-Dispersion Electro-Optic Mach-Zehnder Modulators, http://arxiv.org/ftp/arxiv/papers/1211/1211.2419.pdf

Impact on link budget and/or cost

Fundamental trade-offs
Loss ← ER ← Vpp drive

Extinction Ratio	Peak-to-Peak Drive Voltage	Optical Loss
4 dB	1 Vpp	4.3 dB
10 dB	1 Vpp	9.2 dB
10 dB	2 Vpp	4.5 dB

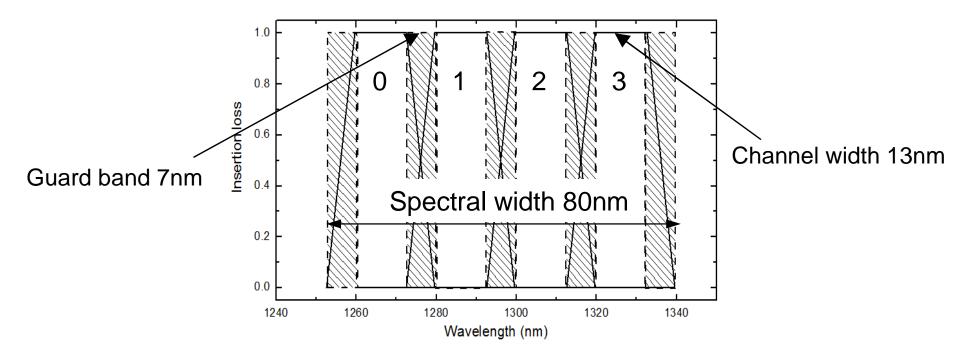
ER=4dB → modest 4.3dB insertion loss at 1Vpp

silicon MZI that can be driven directly from CMOS driver

ER=10dB → high 9.2dB insertion loss at 1Vpp

- high power laser to compensate for high loss → high laser cost
- SiGe driver to increase the driving voltage → high packaging cost

Conclusion:

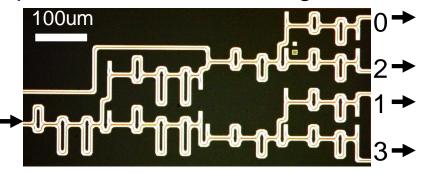

For WDM4 PMD the ER=4dB is chosen to reduce the cost

Choice of grid for 100GbE 2km WDM4 PMD

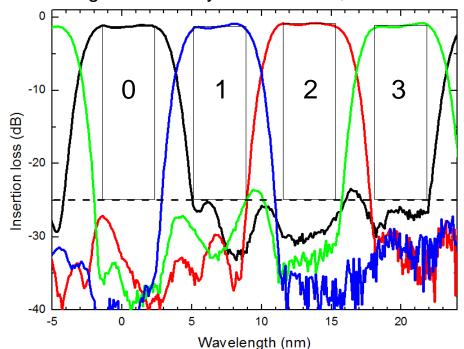
ITU G694.2 CWDM grid for 100GbE 2km PMD

- LAN WDM requires active wavelength locking and tracking
- CWDM is OK
 - → 100% laser yield, no wavelength testing
 - → Up to 130°C can be accommodated
- However 80nm spectral width of ITU G694.2CWDM is not optimal:
 - → Laser gain spectral width is not easy to achieve
 - → Larger variations of slope efficiency and output power

Resemble 4-year old discussions: traverso_01_0108.pdf, traverso_01_0308.pdf, cole_01_0308.pdf


Feasibility: CMOS WDM - no add-on cost solution

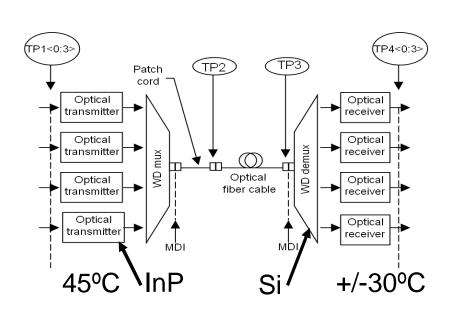
- No additional mask levels
- No additional processing
- Designed for high yield
- No post-processing trimming required
- Footprint 0.6x0.3mm²

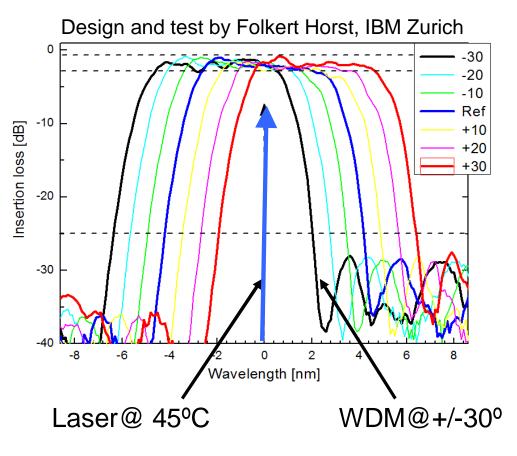

Verified design:

Grid (nm)	6.5	
Width (nm)	3.8	
Guard band (nm)	2.7	
Crosstalk	<-25dB	
Insertion loss	<1dB	
In-band ripple	<1dB	

Die photo of cascaded 4-stage MZI filter

Design and test by Folkert Horst, IBM Zurich


Technical feasibility:


Occupies only 40% of total CWDM spectral width

S.Assefa et al, IEDM 2012

Feasibility: CMOS WDM - temperature tolerance

Technical feasibility:

Less than -25dB xtalk is maintained over 60°C swing Less than 2dB channel insertion loss penalty over 60°C swing

If both TP1 and TP2 are not temperature stabilized

Current WDM design can provide operation 30°C to 60°C

Considerations for optimized WDM grid

WDM grid $\leftarrow \rightarrow$ Total spectral width $\leftarrow \rightarrow$ Laser cost $\leftarrow \rightarrow$ Temperature control

For operation within 0°C to 70°C range maximal temperature spectral shift of 12nm is expected – consistent with ITU G694.2 CWDM grid

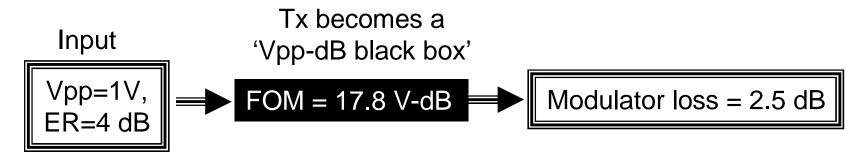
Possible approaches for smaller total spectral width:

- ✓ WDM filters with steeper roll-offs reduction of guard band width
- ✓ Local WDM heating much more cost efficient solution than TEC
 - Active feedback electronic loops in the microcontroller
 - Microcontroller does not require high-end silicon (1000s gates)
- ✓ Temperature tolerant designs of silicon WDM filters

Conclusion: further consideration of balance between laser cost vs WDM design is justified

Summary

- Analysis of insertion loss of silicon MZI impact on link budget, driving voltage and cost is presented
 - Fundamental tradeoff between ER, loss and drive voltage is characteristic for silicon MZI modulators
 - It has direct impact on modulator insertion loss and link budget
 - ER=4dB is compatible with silicon MZI driven with 1Vpp CMOS driver
 - ER=10dB creates much higher loss that can be mitigated with 2Vpp driver or higher power laser to compensate for large insertion loss
- Consideration of impact of the wavelength grid on optimization of laser cost is presented
 - ITU G694.2 CWDM grid is acceptable for WDM4 PMD
 - Better laser yield could be achieved by optimizing the WDM grid
- Technical feasibility of a temperature-tolerant silicon WDM filter is verified



Backup

CMOS MZI Transmitter FOM

- Define new CMOS Modulator FOM
 - $FOM_{IBM} = FOM_1*FOM_2 = (V\pi*L)*(Loss) = (Vpp-dB)$
 - Easily gives loss Vs. ER and drive Vpp, Loss = (FOM/Vpp)*(phase shift/π)
 - Removes device length from consideration and provides loss as a function of Vpp and required ER.
 - Note that changes in Tx bandwidth versus device length and not considered
 - Loss and ER then easily translated into Tx link penalty

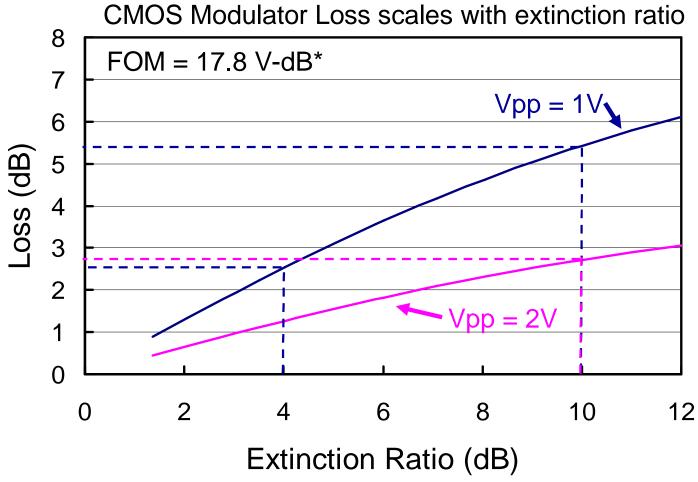
CMOS MZI creates optical loss that needs to be included in link budget

^{*} D.M. Gill, et. al, A Figure of Merit Based Transmitter Link Penalty Calculation for CMOS-Compatible Plasma-Dispersion Electro-Optic Mach-Zehnder Modulators, http://arxiv.org/ftp/arxiv/papers/1211/1211.2419.pdf

FOM allows Comparison of published modulator designs

Comparison of published modulator designs with our FOM

Loss (dB/cm)	Vπ*L (V-cm)	FOM (V-dB)	Ref	
10.7	1.6	17.1	1	*
16.7	1.2	20.7	2	IBM
31.8	0.8	25.4	3	
15.0	1.9	27.9	4	
31.0	1.0	31.0	5	
70.0	0.5	35.0	6	


Lower FOM gives lower link penalty

References

- (1) D.M. Gill, et. al, http://arxiv.org/ftp/arxiv/papers/1211/1211.2419.pdf
- (2) X. Xiao, et. al, Opt. Express 20, 2507-2515 (2012).
- (3) J. Rosenberg, et. al, Opt. Express 20, 2507-2515 (2012).
- (4) P. Dong, et. al., Opt. Express 20, 6163-6169 (2012).
- (5) M. R. Watts et al., JST Quantum Electron. 16, 159 (2010).
- (6) Junichi, et al., paper OMI3, OFC (2010).

CMOS Modulator Loss Vs Extinction Ratio

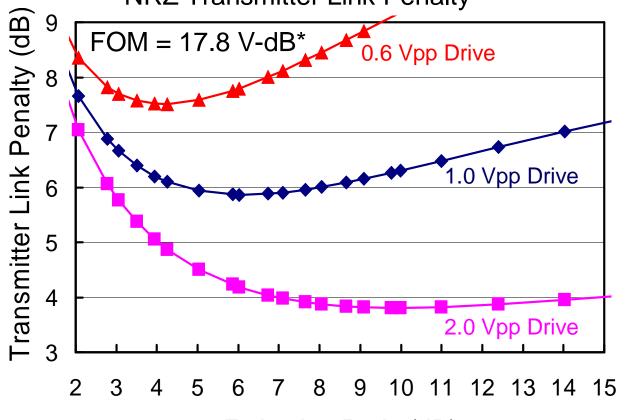

4 dB ER, 1 Vpp \rightarrow 2.5 dB loss 10 dB ER, 1 Vpp \rightarrow 5.5 dB loss 10 dB ER, 2 Vpp \rightarrow 2.75 dB loss

Proposed FOM allows impact of different modulator and driver technologies to be easily compared

^{*} D.M. Gill, et. al, A Figure of Merit Based Transmitter Link Penalty Calculation for CMOS-Compatible Plasma-Dispersion Electro-Optic Mach-Zehnder Modulators, http://arxiv.org/ftp/arxiv/papers/1211/1211.2419.pdf

CMOS Modulator Loss Vs Extinction Ratio

4 dB ER, 1 Vpp \rightarrow 4.3 dB loss 10 dB ER, 1 Vpp \rightarrow 9.2 dB loss 10 dB ER, 2 Vpp \rightarrow 4.6 dB loss


Proposed FOM allows impact of different modulator and driver technologies to be easily compared

^{*} D.M. Gill, et. al, A Figure of Merit Based Transmitter Link Penalty Calculation for CMOS-Compatible Plasma-Dispersion Electro-Optic Mach-Zehnder Modulators, http://arxiv.org/ftp/arxiv/papers/1211/1211.2419.pdf

CMOS MZI Link Penalty Vs Drive Voltage

NRZ Modulation Penalty

$$=10Log_{10}[(10^{\frac{LK}{10}}-1)/(10^{\frac{LK}{10}}+1)]$$

 $\frac{\text{MZI loss}}{(\text{FOM/Vpp})^*(\text{phase shift/}\pi)}$

Extinction Ratio (dB)

Transmitter Link Penalty = {NRZ Modulation Penalty} + {MZI loss}

MZI OMA does not change much between 4 dB and 10 dB ER.

^{*} D.M. Gill, et. al, A Figure of Merit Based Transmitter Link Penalty Calculation for CMOS-Compatible Plasma-Dispersion Electro-Optic Mach-Zehnder Modulators, http://arxiv.org/ftp/arxiv/papers/1211/1211.2419.pdf