Improvement to TDEC calculation for 100GBASE-SR4

Piers Dawe

IEEE P802.3bm, November 2014, San Antonio

Introduction

- TDEC calculations were showing a higher penalty than predicted by link modelling
- Also, a bigger difference between good and bad transmitters than predicted by link modelling
- With a 1:1 trade, min. (OMA-TDP) = constant, this means that a good transmitter gets more credit than it deserves relative to a bad one; the budget doesn't close for the good transmitter
 - About 1/2 dB discrepancy
- The discrepancy is in the MPN calculation:
 - Link model assumes that MPN scales as deterministic inner eye height at eye centre, and with "DCD"increased effective rate
 - The MPN penalty in dB goes as the square of MPN, and some Pcross follows
 - TDEC calculation assumes that MPN scales as OMA
- The proposed change to equations 95-3 and 95-4 on the next page provides a simple, implementable formula to close the budget gap
 - TDEC doesn't know the deterministic inner eye height at eye centre nor "DCD", so the formula is an approximation

Equation changes

- The noise, R, that could be added by a receiver is given by:
- $R = \sqrt{(N^2 + S^2 M^2)}$ (95-3)
- where
- Is a term to account for mode partition noise and modal noise that could be added by the optical channel, defined in Equation (95-4), and
- is the standard deviation of the noise of the O/E and oscilloscope combination. **S**
- $M = \sqrt{(0.0257 OMA^2 + (0.01 P_{ave})^2)}$ (95-4)
 - ---- changes to -----
- The noise, R, that could be added by a receiver is given by:
- $R = (1 M1)\sqrt{(N^2 + S^2 M2^2)}$ (95-3)
- where <u>M1 and M2, defined in Equation (95-4) and Equation (95-5)</u>, account for mode partition noise and modal noise that could be added by the optical channel,
- is the standard deviation of the noise of the O/E and oscilloscope combination, **S**

■ <u>M1 = 0.04</u>	(95-4)	Note for presentation:
■ <u>M2 = 0.0175P_{ave}</u>	<u>(95-5)</u>	other changes will determine
		next slide

ine exact M1: see

Effect of changes

Three proposals: blue, red and green

- Green is most recent
- Proposed TDECs give up to 1/2 dB less credit to a good transmitter Closing the budget gap of slide 2
- Blue line crosses black 1:1 line at 4.9 dB
 - Max TDEC in D3.2
 - M1 = 0.15

Red line crosses black 1:1 line at 4.3 dB

- Proposed max TDEC, comment 11
- M1 = 0.12
- Green lines treat modal noise correctly, as ModalNoiseIn100GBASE-SR4v3a_mmf, and treat mode partition noise like the link model spreadsheet does

Effect of changes: simulations

TDEC against simulated link penalty

Thank You

