

Clarifying Issues Related to Spreadsheet Model using Full Link Simulation for 25G on MMF

Kasyapa Balemarthy Robert Lingle Jr.

September 26-28, 2012

IEEE 802.3bm Task Force

Spreadsheet

Spreadsheet has served us/802.3 very-well for a very long time

- Simple, closed-form expressions for all impairments
 - Adopts Gaussian models for link filters/fiber
 - All noise sources modeled as independent AWGN
- Quick computation via Excel \rightarrow no need for detailed link model
- Easily compare contributions of different impairments
- Reach of 25G systems limited by Mode Partition Noise
- However, some confusion about treatment of Mode Partition Noise in the spreadsheet exists
 - Model deficiencies?
 - Is required ISI-scaling already included? (see lingle_01_0712_optx)
 - Is the spreadsheet using the worst-case bit pattern?
 - Parameter uncertainties:
 - Is mode partition noise parameter $k_{MPN} = 0.3$ reasonable?
 - parameterization of RMS spectral width

- VCSEL modes computed from generalized Laguerre polynomials
 - Pepeljugoski *et al.*, IEEE JLT vol. 21, no. 5, pp.1242-1255, 2003
 - Spectrum chosen from above reference, spectral width scaled appropriately
- Transmitter employs PRBS sequences and NRZ pulse with given rise-time
- Multimode fiber
 - Modes, their group delays and chromatic dispersion computed using mode solver
 - Differential modal attenuation included via measured loss data
 - Mode power distribution computed via overlap integrals for each VCSEL mode
 - Interaction between VCSEL-fiber modes properly accounted for
- Receive filter: Fourth-order Bessel-Thomson filter
- Received waveform for each VCSEL mode *i* computed:

$$r_i(t) = \sum_j MPD_{ij} |E_{ij}(t)|^2$$

Bit error rate in the presence of **MPN**

 Ogawa-Agrawal (OA) model employed to compute the mean and std. dev. of received waveform:

$$\mu_{r}(t) = \sum_{i} \mu_{i} r_{i}(t) \qquad \sigma_{r}(t) = k_{MPN} \left[\sum_{i} \mu_{i} r_{i}^{2}(t) - \mu_{r}^{2}(t) \right]^{0.5}$$

- μ_i : mean mode powers (from VCSEL spectrum)
- $r_i(t)$: Received waveform for VCSEL mode *i* (normalized w.r.t. OMA)
- k_{MPN} : mode partition noise parameter

• Bit error rate estimated from:
$$BER = \frac{1}{2} \cdot \operatorname{erfc}\left(\sqrt{\frac{S^2 \mu_r^2}{\sigma_n^2 + S^2 \sigma_r^2}}\right)$$

• S: OMA, σ_n : thermal noise variance

- OA-model does not discuss BERs but it can be re-cast as above
- Independent of the OA-model, we have shown that above expression is correct for low-to-moderate MPN:
 - Balemarthy & Lingle, ECOC 2012, Th.2.B.4
- Sampling BER at optimum instant and averaging over bit patterns yields the average BER (in the presence of MPN)

$$=\frac{1}{2} \cdot \operatorname{erfc}\left(\sqrt{\frac{S^2 \mu_r^2}{\sigma_n^2 + S^2 \sigma_r^2}}\right)$$

"Full" OA model and its simplification

- "Full" OA-model uses any arbitrary spectrum to begin with
- OA model make two further assumptions:
 - Assumes a Gaussian spectrum with infinite number of modes
 - Assumes inner-most eye can be approximated by a cosine
- These assumptions result in closed-form expressions for the mean and std. dev. of the received sample → used by the IEEE spreadsheet
 - For the inner-most eye and
 - At the optimum sampling instant
- We only use the "Full" OA model in the link simulation, not the simplified one used by the spreadsheet

- Inner-most eye results in the worst-case bit pattern for links without MPN
 - Corresponds to the isolated '1' pattern: "000010000"
 - Used by the OA-model and current spreadsheet even for MPN penalty computation
- Is this the worst case eye pattern for MPN? For total penalty?
- How much would averaging over BER improve results?
- Investigate question by using the full link model

Mean and standard deviation of Rx Waveform with MPN

- 150m link, $k_{MPN}=0.3,\,\sigma_{\lambda}=0.6$ nm
- Best case pattern (very little ISI) has extremely low MPN std. dev.
 - Blue ovals
- Isolated '1' has moderate MPN std. dev.
 - Violet ovals
- Transition patterns have lower ISI than Isolated '1', but seem to have higher MPN than Isolated '1'
 - Maroon ovals

Correlation between signal mean and its std. dev. due to MPN

- At the optimum sampling instant, the isolated '1' pattern indeed has lower MPN than the transition patterns
- Over a ±0.1UI interval, the transition patterns have modestly lower and higher MPN, and sometimes lower MPN than the isolated '1' pattern

Bit error rate curves for different bit patterns

A Furukawa Company

- Pattern that has the worst-case BER is selected numerically
 - black dashed curve
- Isolated '1' pattern is the worst-case pattern
 - Black dashed curve overlaps the red solid curve
- Transition pattern has lower BER than the isolated '1' pattern
 - and even lower than the average BER

Total (ISI + MPN) penalty for different fiber lengths

- Optimum sampling instant
- Penalty computed from BER curves at a desired BER of 10⁻⁶ w.r.t. ISI-free link
 - Mimics FEC
- Penalty is the total ISI + MPN penalty

 Even for different fiber lengths, the isolated '1' is the worst-case pattern

Impact of sampling instant on the worst-case pattern at 150m

 Penalty computed from BER curves at a desired **BER of** 10^{-6} w.r.t. ISI-free link

A Furukawa Company

Penalty is the total ISI + MPN penalty

- BERs and Penalties can be computed as a function of the sampling instant for each bit pattern
- Isolated '1' is the worst-case bit pattern for all sampling instants

Average BER: B2B Average BER: w/o MPN

111111111

000010000 000011111 101010101 Worst-case

Average BER: w/ MPN

- Penalty computed from BER curves at a desired BER of 10⁻⁶ w.r.t. ISI-free link
 - Mimics FEC
- Penalty is the total ISI + MPN penalty
- For all different lengths, for all sampling instants, the isolated '1' is the worst-case pattern

- Isolated '1' has the higher ISI than transition patterns but its MPN may be lower
 - sensitive to sampling instant tolerances
- But the isolated '1' has the worst-case penalty, independent of sampling instants and fiber lengths
- Spreadsheet, as it stands, is doing the right thing with the worstcase pattern choice

System measurements at 25Gbps

- Previously reported in lingle_01_0112_NG100GOPTX, January 2012
 - Experiments courtesy: Yi Sun, X. Jiang of OFS and C.P. Caputo, S.
 E. Ralph of Georgia Tech
- 25Gbps VCSEL from Emcore
 - 0.62nm RMS spectral width

Fiber	EMBc	DMD (0 – 18µm)	DMD (0 – 23μm)
A _e	10 GHz-km	0.066	0.069
B _e	5.2 GHz-km	0.102	0.102

- Previously reported in lingle_01_0112_NG100GOPTX, January 2012
- BER curves can be approximated by straight lines
- Mode partition noise may not be significant for this VCSEL for a 150m link at room temperature.

Numerical modeling

Approximate the VCSEL spectrum from the experiment via EF-match

OM4 fibers simulated using mode solver

Fiber	EMBc	DMD (0 – 18μm)	DMD (0 – 23μm)
A_n	9.2 GHz-km	0.0347	0.0927
B _n	5.9 GHz-km	0.0451	0.1385

- PRBS sequences are processed
- Mode partition noise modeled using full Ogawa-Agrawal model
- BER averaged over both ISI patterns and MPN

- Each column corresponds to a different k_{MPN}, each row to a different fiber; impact of ISI and MPN is calculated
- BER curves are not straight lines for $k_{MPN} = 0.3, 0.2$ (particularly for the 150m link) but are straight lines for $k_{MPN} = 0.1$
- Suggests k_{MPN} may be in the 0.1-0.2 range

Comparison between experimental and simulated results

- 150m link
- Simulate fibers with various modal bandwidths; repeat with k_{MPN} = 0.1, 0.2, 0.3
- Experimental results lie between the simulated results for $k_{MPN} = 0.1$ and those for $k_{MPN} = 0.2 \rightarrow$ mode partition parameter is in the 0.1-0.2 range

Observations II

- Experimental results show no apparent evidence of mode partition noise
 - Straight-line BER curves
- Established that MPN is present but is weaker than typically assumed
 - Mode partition parameter k_{MPN} likely to be in the 0.1-0.2 range instead of 0.3 (as used by the spreadsheet)
 - Is this because VCSEL is not in its worst-case of mode-partitioning at room temperature?
- Further studies of link performance versus VCSEL temperature dependence are in progress
 - 10G studies using commercial transceivers
 - 25G studies using VCSEL dies

Conclusions

- Full-link modeling employed
- Showed that worst-case pattern is the isolated '1' pattern, independent of sampling instant and fiber length
- Comparison between experimental and simulated data can be used to bound the mode partition noise parameter k_{MPN}.
 - k_{MPN} may be in the 0.1-0.2 range instead of 0.3 for this VCSEL at room temperature
 - Need further study of temperature effects and additional devices