Update on Performance Studies of 100 Gigabit Ethernet Enabled by Advanced Modulation Formats

Jinlong Wei, Jonathan D. Ingham, Richard V. Penty and Ian H. White E-mails: {jw748, jdi21, rvp11, ihw3}@cam.ac.uk

> David G. Cunningham E-mail: david.cunningham@avagotech.com

> > September, 2012

Outline

Background

□ Simulation Evaluation

- Penalties due to baseline wander, timing jitter and reflection
- □ Link Power Budgets

Conclusions

Next-Generation Single-Laser 100 Gigabit Ethernet

- □ IEEE 802.3 Next Generation 40 Gb/s and 100 Gb/s Optical Ethernet Study Group proposed PAM
- In addition to PAM, we have proposed 100 Gb/s CAP by using MZMs or directly-modulated lasers (DMLs) together with FEC^[1]
- We have also experimentally demonstrated CAP with high power efficiency^[1]
- We have also proposed multipulse modulation^[2]
- However, the modulation-format-dependent system power penalties due to the following mechanisms were not investigated in our earlier studies^[1, 2]
 - Baseline wander
 - Timing jitter
 - Reflection-induced interferometric noise
- □ In this work, we evaluate the effect of the above mentioned physical mechanisms and provide the corresponding requirements for each modulation format

 [1] Jinlong Wei, Jonathan D. Ingham, Richard V. Penty and Ian H. White, "Performance Studies of 100 Gigabit Ethernet Enabled by Advanced Modulation Formats," May 2012, available: <u>http://www.ieee802.org/3/100GNGOPTX/public/may12/ingham_01_0512_optx.pdf</u>
[2] Jonathan D. Ingham, Richard V. Penty, Ian H. White and David G. Cunningham, "Multipulse modulation schemes for 100 Gigabit Ethernet," July 2012, available: <u>http://www.ieee802.org/3/100GNGOPTX/public/jul12/ingham_01a_0712_optx.pdf</u>

Fundamentals of NRZ, PAM and CAP

• 100 Gb/s NRZ

Symbol rate: 100 Gaud

• 100 Gb/s CAP-16

Symbol rate: 25 Gbaud Roll-off coefficient: 0.25

100 Gb/s PAM-4

Symbol rate: 50 Gbaud

Fundamentals of Multipulse Modulation

• 100 Gb/s multipulse modulation

Symbol rate per pulse: 25 Gbaud

• Modulated "eye" diagrams at output of transmitter

• After matched filter in receiver with all channels present simultaneously

Transceiver Component Parameters

component	parameter	value			
Laser and modulator	Rise time	10 ps (20% to 80%) with LINEAR response			
	RIN	-137.3 dB/Hz			
	Wavelength	1300 nm			
	MZM frequency response	34 GHz -3 dBe bandwidth 1 st order RC response			
SMF	Min. dispersion λ	1324 nm			
	Laser centre wavelength	1295 nm			
	Dispersion slope	0.093 ps/km/nm ²			
	Length	500 m to 2 km			
Receiver	Filter type	1 st order RC response (TIA) [1]			
	-3 dBe bandwidth	28 GHz			
	Responsivity	0.9 A/W			
	Sensitivity	-16.5 dBm @ BER = 10 ⁻⁵ for 34.375 Gb/s NRZ system			

The parameters are used for all 100 Gb/s systems in this work

The above reference 34.357 Gb/s NRZ system gives rise to a sensitivity of -18 dBm @ BER = 10^{-3} , indicating total power budget of 18 dB with FEC(10^{-3} , 10^{-12}) under launch power of 0 dBm

[1] Ali Ghiasi, "PAM-8 Optical Simulations," May 2012, available: http://www.ieee802.org/3/100GNGOPTX/public/may12/ghiasi_01_0512_optx.pdf

Baseline Wander Model for PAM

- The baseline wander induced noise has approximately Gaussian probability distribution^[1, 2]
- The variance of the noise is given by^[2]

 $\sigma_{BLwander}^{2} = \frac{1}{2} \frac{T}{RC} E\{I_{k}^{2}\}$ Detected symbol levels with k=0, 1, 2,..., M-1 for PAM-M Notch filter cut - off frequency $f_{c} = \frac{1}{2 \pi RC}$

[1] R. Walker, et al., "66b/64b low overhead coding proposal for serial links," Dec. 2000, available: <u>http://www.omnisterra.com/walker/pdfs.talks/dallas.pdf</u>

[2] N. Sommer, et al., "Analysis of the probability distribution of the baseline wander effect for baseband PAM transmission with application to Gigabit Ethernet," 11th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Dec. 2004.

Penalties due to Baseline Wander

- For PAM schemes, the more levels, the larger the penalty
- The use of DFE for PAM-8 and PAM-16 does not change significantly the penalty
- CAP-16 has the best baseline wander tolerance: approximately zero penalty for notch filter cut-off frequency up to 100 MHz

DFE: 10 taps T/2 FFE and 3 taps DFE (except multipulse: interference cancellation applied w/o equalization)

Eye diagrams for laser output by taking notch filter into account (filter cut-off frequency is 5MHz)

Deterministic Timing Jitter (DJ) Penalty

- Timing jitter calculation is done by offsetting the sampling point in the simulation
- For a target DJ = ± 2 ps, PAM-8 with DFE, PAM-16 with DFE and CAP-16 with DFE do not perform well
- PAM-8 without DFE and PAM-16 without DFE have quite low jitter penalty, though are sensitive to baseline wander
- A simple CDR will not work well for PAM-8 with DFE, PAM-16 with DFE and CAP-16 with DFE: a more advanced signal recovery method is required

Multipulse (with interference cancellation)

Reflection-Induced Interferometric Noise Penalty

- The smaller number of levels PAM has, the smaller the penalty is
- The trend agrees with [1]

DFE: 10 taps T/2 FFE and 3 taps DFE

(except multipulse: interference cancellation applied w/o equalization)

No. of intermediate connectors	Effective reflection coefficient (dB)
0	-54
4	-42
10	-36

[1] G. Nicholl, et al., "Update on technical feasibility for PAM modulation", Mar. 2012, available: http://www.ieee802.org/3/100GNGOPTX/public/mar12/plenary/nicholl_01b_0312_NG100GOPTX.pdf

Requirements

	NRZ	PAM-4	PAM-8		PAM-16		CAP-16	Multipulse
EQ	w/ DFE	w/ DFE	w/o DFE	w/ DFE	w/o DFE	w/ DFE	w/ DFE	w/o DFE
BL wander penalty *	high	high	very high	very high	very high	very high	negligible	low
DJ penalty **	high	high	low	high	low	very high	high	low
Reflection penalty***	low	low	medium	medium	high	high	medium	low
Requirements	Notch filter fc < 100 MHz	Notch filter fc < 50 MHz	Notch filter fc < 10 MHz	CDR supports DJ <= 1 ps and fc < 10 MHz	fc < 1 MHz and reflection < -36 dB	CDR supports DJ <= 0.5 ps, fc < 1 MHz, and reflection < - 36 dB	CDR supports DJ <=1.0 ps	Interference cancellation scheme in receiver

* Notch filter with cut-off frequency of 10 MHz is considered; ** DJ of ± 2 ps is considered; *** Effective reflection coefficient of -36 dB is considered

System Power Budgets with DJ of ± 1 ps

DFE: 10 taps T/2 FFE and 3 taps DFE

(except multipulse: interference cancellation applied w/o equalization)

- Notch filter cut-off frequency = 10 MHz and reflection coefficient of -36 dB (corresponding to 10 intermediate connectors in the link) are considered
- NRZ with DFE, PAM-4 with DFE, PAM-8 with DFE, CAP-16 with DFE and multipulse support transmission up to 5 km SMF

System Power Budgets with DJ of ± 2 ps

DFE: 10 taps T/2 FFE and 3 taps DFE

(except multipulse: interference cancellation applied w/o equalization)

- Notch filter cut-off frequency = 10 MHz and reflection coefficient of -36 dB (corresponding to 10 intermediate connectors in the link) are considered
- Only NRZ with DFE, PAM-4 with DFE and multipulse successfully support transmission up to 5 km SMF

Conclusions

- We have investigated the effect of baseline wander, DJ and reflection-induced interferometric noise on the performance of 100 Gb/s NRZ, PAM-4, PAM-8, PAM-16, CAP-16 and multipulse systems
- Requirements in order to successfully support 100 Gb/s transmission over SMF have been listed for each modulation format
- The link power budgets for various 100 Gb/s systems have been analysed and compared by taking into account baseline wander, DJ and link reflection