
Data Rate Adaptation in EPoC

Marek Hajduczenia, PhD
ZTE Corporation

marek.hajduczenia@zte.pt

Andrea Garavaglia
Qualcomm Inc.

andreag@qti.qualcomm.com

IEEE 802.3bn Orlando, FL 18-21 March 2013

mailto:marek.hajduczenia@zte.pt
mailto:marek.hajduczenia@zte.pt

Summary
• This slide deck provides details about DRA

function in EPoC, and illustrates detailed
changes to 10G-EPON DRA function needed to
support this function in EPoC, following on [2]

• It is suggested to include DRA in EPoC based on
the outline presented in these slides

Note: For now only the basic functionality is covered, while more
advanced features (like, e.g., code word shortening) will be
treated in a separate presentation. Further revisions to
description, overhead formulas, etc., will be needed over time.

 2

DRA IN EPOC - RX
Receive Direction in CLT/CNU

3

DRA in EPoC (in picture)

4

MAC & MAC Clients

IDLE DELETION

FEC

INTERLEAVER

PMD

10G

I
D
L
E

D
A
T
A

~2G

I
D
L
E

FEC + coding +
PHY overhead

10G

I
D
L
E

D
A
T
A

I
D
L
E

~3G

XGMII

PMA

~6G
~7G

Pi
ct

ur
e

is
no

t u
p-

to
-s

ca
le

 !

Pi
ct

ur
e

is
no

t u
p-

to
-s

ca
le

 !

IDLE handling in Rx direction (CNU/CLT)

5

IDLE
Insertion

IDLE
Deletion

RX Side

coax

RX

IDLE Deletion process
 Extra IDLEs are then removed above

XGMII interface and complete
Ethernet frames are then passed to
respective MAC Clients.

 Data rate above MAC is equal to Reff.

IDLE Insertion process:
 FEC encoded packets arrive at PCS at

the PMD rate and are fed into the
FEC decoder. After removal of FEC
parity, data rate becomes Reff.

 Gaps between frames are filled with
IDLEs to match XGMII data rate (data
rate of RMX).

IDLE Deletion (baseline I)

6

IDLE Deletion process - objective
 Extra IDLEs are removed above XGMII interface and complete Ethernet frames are

then passed to MAC Clients – this is part of normal Ethernet MAC operation
 data rate above MAC is equal to Reff

How is that achieved in 10G-EPON?
 The Reconciliation Sublayer (RS) processes incoming packets from the receiving PCS

layer and selects the target MAC instance based on LLID contained in preamble
 IDLEs are discarded by MAC, and they never reach any MAC Client

How it could be done in EPoC?
 Implementation of this function from 10G-EPON can be directly reused in EPoC –

see IEEE Std 802.3, 76.2.6.1.3 for more details [1]
 Baseline proposal I: IDLE Deletion in EPoC in Rx direction to use 10G-EPON IDLE

Deletion mechanism per IEEE Std 802.3, Clause 76. This
applies to both CLT and CNU sides.

IDLE Insertion – Rx direction

7

IDLE Insertion process – objective
 FEC encoded packets arrive at PCS at the PMD rate and are fed into the FEC

decoder at the RX side.
 After removal of FEC parity, data rate becomes Reff. Gaps between frames

are filled with IDLEs to achieve data rate of RMX and match XGMII data rate.

How is that achieved in 10G-EPON?
 Data leaving FEC decoder is bursty. FEC parity data was removed. Effective

data rate is smaller than RMX.
 Bursty data is then fed into the IDLE Insertion function, containing a play-

out buffer. Data is inserted at Reff and sent towards XGMII at RMX.
 Difference between Reff and RMX is compensated by insertion of IDLE

characters when play-out buffer becomes empty
 The next two slides demonstrate this process in a visual form

IDLE Insertion (in picture)

8

FEC decoder
input

Idle Insertion
input

Idle Insertion
Output

IDLE block Data block minimum IPG FEC parity FEC codeword

Idle Insertion process and playout buffer

FEC encoding
append FEC parity

MAC Client

MAC + RS

Transfer data through xMII

Transfer data frames to client applications

IDLE Insertion
(operation example)

9

4 I 3 I 2... 1

FIFO_II_SIZE

4 3 2 1

I I

IDLE Insertion Process

FEC
Decoder +
64b/66b
Decoder

XGMII

Incoming
bursty data

Inserted IDLEs A gap of maximal length
FIFO_II_SIZE can be filled with IDLEs

FIFO
buffer

Write data
at RMX

Write data
at Reff

IDLE Insertion (SD)

10

INIT

BEGIN

UCT

FILL_QUEUE

T_TYPE(rx_raw_in) = (C+S+E) &
VectorCount < FIFO_II_SIZE – 1

RECEIVE_VECTOR
FIFO_II[VectorCount] ← rx_raw_in<71:0>
VectorCount ++

ELSE

UCT

Link is not operating,
send error to XGMII

For each incoming vector of
data (or idle in excess), store the
vector in the FIFO_II queue for
and increase VectorCount

In case there are data in the FIFO_II queue, pass
the next vector to the XGMII and shift queue

LBLOCK_TO_XGMII
rx_raw_out<71:0> ← LBLOCK_R

VectorCount = 0 VectorCount != 0

New data arrives

WAIT_FOR_CLOCK

PASS_VECTOR_TO_XGMII
rx_raw_out<71:0> ← FIFO_II[0]

 // shift FIFO forward
FIFO_II[0] ← FIFO_II[1]
FIFO_II[1] ← FIFO_II[2]

…
FIFO_II[VectorCount-2] ← FIFO_II[VectorCount-1]
VectorCount --

UCT

INSERT_IDLE
FIFO_II[VectorCount] ← IDLE_VECTOR
VectorCount ++

UCT

RX_CLK & DUDIRX_CLK & !DUDI

Insert vectors of idles in
the FIFO_II queue to
compensate gaps in
output (gaps are up to a
size of FIFO_II_SIZE)

Play-out buffer
output – send
data to XGMII

Receives data
from decoder

IEEE Std 802.3, Figure 76-23

IDLE Insertion (baseline II)

11

How it could be done in EPoC?

 Implementation of this function from 10G-EPON can be directly reused in EPoC –
see IEEE Std 802.3 [1], 76.3.3.7 and Figure 76-23

 The size of the IDLE Insertion buffer (parameter FIFO_II_SIZE) will need to be
defined, based on supported PHY rates and adopted FEC for DS and US
 FIFO_II_SIZE needs to accommodate FEC and DRA for the largest possible gap

that can be observed under normal operating conditions
 Corresponds to the maximum-size frame at lowest coax rate and the associated

FEC parity

Baseline proposal II: IDLE Insertion in the Rx direction reuses 10G-EPON design
as defined in IEEE Std 802.3, Clause 76. The value for the
FIFO_II_SIZE is TBD at this time, pending selection of FEC
code and minimum coax data rate. This applies to both
CLT and CNU.

Straw Poll #1 and #2

12

#1: IDLE Deletion in EPoC RS in Rx direction to use 10G-EPON IDLE
Deletion mechanism per IEEE Std 802.3, Clause 76. This applies
to both CLT and CNU sides.

Ad-hoc call: Yes: 9 / No: 0 / Undecided: 0

TF meeting: Yes: / No: / Undecided:

#2: IDLE Insertion in EPoC PCS in the Rx direction reuses 10G-EPON
design as defined in IEEE Std 802.3, Clause 76. The value for
FIFO_II_SIZE is TBD at this time, pending selection of FEC code
and coax data rate. This applies to both CLT and CNU.

Ad-hoc call: Yes: 9 / No: 0 / Undecided: 0

TF meeting: Yes: / No: / Undecided:

DRA IN EPOC - TX
Transmit Direction in CLT/CNU

13

Handling in the TX direction (CLT/CNU)

14

IDLE
Insertion

IDLE
Deletion

TX Side

coax

CLT
IDLE Insertion process
 Packets are properly inserted (by the

Multipoint Transmission Control) and
filled with IDLEs by the MAC layer. MPMC
keeps data rate at Reff.

 In this way, a fixed rate of 10G is
guaranteed by MAC for the XGMII
interface (RMX). Extra IDLEs inserted by
MAC create space for FEC parity bits and
all PHY overhead in PMD

IDLE Deletion process
 Extra IDLEs are then removed by the IDLE

Deletion process inside the PCS (upper
PHY stack) to match with PMD rate and
include FEC parity bits.

 At the output of IDLE Deletion process,
data rate is equal to Reff.

IDLE Insertion – TX Direction

15

IDLE Insertion process - objective
 Extra IDLEs are inserted above XGMII interface (by MPMC), in order to leave sufficient

space for insertion of FEC parity in PCS and other PMD overhead

How is that achieved in 10G-EPON?
 IDLE insertion in implemented for the TX direction by spacing packets at Multi-Point

Control , so that MAC can inserts IDLEs (see IEEE Std 802.3 [1], 77.2.2)
 Every time a packet is sent, a function called FEC_Overhead is executed to compute

any additional waiting time that needs to be considered for FEC parity insertion
 The additional time is added on a per code word base, after the packet that

complete the payload content of the code word
 The packet and the FEC code word payload does not need to align, i.e. a packet

can be carried by one or more FEC code words
 See the next three slides for details

EPON IDLE Insertion – OLT side

16

IEEE Std 802.3, Clause 77, Figure 77-13

INIT

transmitInProgress ← FALSE
transmitPending ← FALSE

BEGIN

MCI:MA_DATA.request(DA, SA, m_sdu_tx)

UCT

Transmit variables are
reset

Add timestamp to
control packets that
needs it

Delay transmission till the OLT data
detector finish to send previous
parity bits (no packet transmit during
FEC parity)

WAIT FOR TRANSMIT

SelectFrame()
transmitPending ← TRUE

TRANSMIT READY

(transmitEnable = TRUE) & (fecOffset < FEC_PAYLOAD_SIZE)

Length/Type = MAC_Control_type Length/Type ≠ MAC_Control_type

PARSE OPCODE
opcode_tx ← data_tx[0:15]

MARK TIMESTAMP
data_tx[16:47] ← localTime

opcode_tx ∈ {timestamp opcode} opcode_tx ∉ {timestamp opcode}

SEND FRAME
transmitInProgress ← TRUE
packet_inititate_delay ← FEC_Overhead(sizeof(data_tx)+tailGuard)
MAC:MA_DATA.request(DA, SA, m_sdu_tx)

START PACKET INITIATE TIMER
[start packet_initiate_timer, packet_initiate_delay]

UCT

packet_initiate_timer_done

Send a frame and signal
the transmission is in
progress

Wait to make space for
idle insertion characters
for FEC

Key remarks:

 A MAC Control instance gives
back control after completing
transmission

 A transmission includes the
packet and could include
additional space for parity

 The parity is added on a code
word size base (not necessarily
after each packet), by
FEC_Overhead function

 A packet is delayed till end of
FEC parity transmission in case
popping up outside FEC
payload transmission (in order
to avoid jitter after timestamp)

EPON IDLE Insertion – OLT side

17 IEEE Std 802.3, Clause 77, Figure 77-13 - Details

Incoming Data or Control Frame
(see IEEE 802.3-2012, Figure 77-13)

START PACKET INITIATE TIMER

[start packet_initiate_timer, packet_initiate_delay]

UCT

packet_initiate_timer_done

Back to INIT block
(see IEEE 802.3-2012, Figure 77-13)

Send a frame and signal
the transmission is in
progress

SEND FRAME

transmitInProgress ← TRUE
packet_inititate_delay ← FEC_Overhead(sizeof(data_tx)+tailGuard)
MAC:MA_DATA.request(DA, SA, m_sdu_tx)

Wait to make space for
idle insertion characters
for FEC and for de-rating

EPON IDLE Insertion – ONU side

18

IEEE Std 802.3, Clause 77, Figure 77-14

Key remarks:

 Transmission is controlled by GATE
message content, which results in
setting transmitAllowed variable

 A MAC Control instance gives back
control after completing transmission

 A transmission includes the packet and
could include additional space for parity
– two IDLEs blocks are including in the
first CW of a burst

 The parity is added on a code word size
base (not necessarily after each packet),
by FEC_Overhead function

 A packet is delayed till end of FEC parity
transmission in case popping up outside
FEC payload transmission (in order to
avoid jitter after timestamp)

INIT
IdleCount ← 0

BEGIN

transmitAllowed & MCI:MA_DATA.request(DA, SA, m_sdu_tx)

UCT

Add timestamp to
control packets that
needs it

TRANSMIT READY
SelectFrame()

CHECK PACKET TYPE

OctetsRequired ≤ OctetsRemaining

Length/Type = MAC_Control_type Length/Type ≠ MAC_Control_type

PARSE OPCODE
opcode_tx ← data_tx[0:15]

MARK TIMESTAMP
data_tx[16:47] ← localTime

opcode_tx ∈ {timestamp opcode} opcode_tx ∉ {timestamp opcode}

TRANSMIT FRAME
packet_inititate_delay ← FEC_Overhead(sizeof(data_tx)+tailGuard)
MAC:MA_DATA.request(DA, SA, m_sdu_tx)

START PACKET INITIATE TIMER

[start packet_initiate_timer, packet_initiate_delay]

UCT

packet_initiate_timer_done

Send a frame and signal
the transmission is in
progress

Wait to make space for
idle insertion characters
for FEC

START OF GRANT
fecOffset ← 16
grantStart ← FALSE

(fecOffset[1:0] = 0) & (grantStart +
(IdleCount ≥ ResetBound))

UCT

!grantStart & (fecOffset <
FEC_PAYLOAD_SIZE) &

(IdleCount < ResetBound)

CHECK SIZE
OctetsRequired ← CheckGrantSize(sizeof(data_tx)+tailGuard)

OctetsRequired > OctetsRemaining

Check if the grant is
sufficient for the current
packet

Move into transmit ready state in
case transmitAllowed is TRUE, as
set by GATE processing

At transmit burst start, two blocks
of idles (2x66 bits after line
encoding – 16 octets) are
included in the first CW

EPON IDLE Insertion – ONU side

19 IEEE Std 802.3, Clause 77, Figure 77-14 - Details

TRANSMIT FRAME
packet_inititate_delay ← FEC_Overhead(sizeof(data_tx)+tailGuard)
MAC:MA_DATA.request(DA, SA, m_sdu_tx)

Incoming Data or Control Frame
(see IEEE 802.3-2012 figure 77-14)

START PACKET INITIATE TIMER

[start packet_initiate_timer, packet_initiate_delay]

UCT

packet_initiate_timer_done

Back to INIT block
(see IEEE 802.3-2012 figure 77-14)

Send a frame and signal the
transmission is in progress

CHECK SIZE
OctetsRequired ← CheckGrantSize(sizeof(data_tx)+tailGuard)

Check if the grant is
sufficient for the
current packet

Wait to make space for idle
insertion characters for FEC

OctetsRequired ≤ OctetsRemaining OctetsRequired > OctetsRemaining

Back to INIT block
(see IEEE 802.3-2012 figure 77-14)

10G-EPON FEC_Overhead function

FEC_Overhead(length) = 12 + FEC_PARITY_SIZE * floor[(fecOffset + length)/FEC_PAYLOAD_SIZE]

12 bytes for IPG

FEC parity bits Size
FEC information bits Size

fecOffset advances by 1 every 8 bit times on PHY
Variable tracking time passed in octets – start at 0
and get reset to 0 when reaching code word size

The function returns the length of the data to transmit and cumulates information bits
(tracked by the variable fecOffset) - when the cumulated data exceeds the
FEC_PAYLOAD_SIZE, a FEC_PARITY_SIZE interval is also included to space for parity

EF-1 EF-2 EF-3 EF-4 P EF-3

time
CW-1 CW-2

P I EF-5 …

Space for FEC parity bits
Data frames

Extra IDLEs (no traffic)

Encoder output timeline

20

EPoC IDLE Insertion – CLT side

21

Incoming Data or Control Frame

START PACKET INITIATE TIMER

[start packet_initiate_timer, packet_initiate_delay]

UCT

packet_initiate_timer_done

Back to INIT block

Send a frame and signal the
transmission is in progress

SEND FRAME

transmitInProgress ← TRUE
packet_inititate_delay ← FEC_Derate_Overhead(sizeof(data_tx)+tailGuard)
MAC:MA_DATA.request(DA, SA, m_sdu_tx)

Wait to make space for
idle insertion characters
for FEC and for de-rating

EPoC IDLE Insertion – CNU side

22

TRANSMIT FRAME
packet_inititate_delay ← FEC_Derate_Overhead(sizeof(data_tx)+tailGuard)
MAC:MA_DATA.request(DA, SA, m_sdu_tx)

Incoming Data or Control Frame

START PACKET INITIATE TIMER

UCT

packet_initiate_timer_done

Back to INIT block

Send a frame and signal the
transmission is in progress

CHECK SIZE
OctetsRequired ← CheckGrantSize(sizeof(data_tx)+tailGuard)

Check if the grant is
sufficient for the current
packet

Wait to make space for
idle insertion characters
for FEC and for de-rating

OctetsRequired ≤ OctetsRemaining OctetsRequired > OctetsRemaining

Back to INIT block

[start packet_initiate_timer, packet_initiate_delay]

EPoC FEC_Overhead Function

23

How it could be done in EPoC?
 The FEC_Overhead function is updated to FEC_Derate_Overhead to include also the

de-rating component, which needs to be applied to data, IPG and parity insertions

FEC_Derate_Overhead(length) = 12 + ceiling[(R_MX/R_PHY – 1) *

 * (length + FEC_PARITY_SIZE * floor[(fecOffset + length)/FEC_PAYLOAD_SIZE])]

XGMII Rate
FEC information
bits Size

fecOffset advances by 1 every 8 bit times on coax PHY
Variable tracking time passed in octets – start at 0 and
get reset to 0 when reaching code word size

Packet Length, including
IPG and preamble FEC parity bits Size

Coax Rate 12 bytes for IPG

Example

EPoC IDLE Insertion (baseline III)

24

Baseline proposal III: IDLE Insertion in EPoC RS in the Tx direction re-uses 10G-
EPON design as defined in IEEE Std 802.3, Clause 77 with
new FEC parameters for EPoC. The functionality is
extended to include de-rating by means of a new function
FEC_Derate_Overhead(∙) that replaces the FEC_Overhead(∙)
function.
 The exact modifications to the overhead formula and

related parameters are TBD.

Note: The name of the new function is just an example and can
be finalized at a later stage.

IDLE Deletion – TX Direction

25

IDLE Deletion process - objective
 Extra IDLEs are removed below XGMII interface before PHY processing occurs

 Effective data rate at PHY after deletion is equal to Reff

How is that achieved in 10G-EPON?
 IDLE deletion in implemented in the PCS for TX direction (see IEEE Std 802.3 [1],

76.3.2.1)
 The number of vectors transiting the XGMII interface are counted and the function

deletes FEC_PSize IDLEs at each FEC code word payload FEC_DSize of data:
 At initialization vector counter and IDLE deletion counter are reset to zero
 Each time a vector of data transits, the vector counter is incremented
 When the vector counter reaches the size of the code word payload, the IDLE

deletion counter is incremented by the size of the code word parity
 Each time vector of IDLEs transits, deletion occurs in case the IDLE deletion

counter is larger than zero (e.g. still some IDLE to be deleted)
 See next slide for the corresponding state diagram

10G-EPON IDLE Deletion – OLT side

26

INIT

VectorCount ← 0
DelCount ← 0

BEGIN

UCT

DELETE_IDLE
DelCount --

T_TYPE(tx_raw) = (C+E) &
DelCount > 0

SEND_VECTOR
Tx_raw_out<71:0> ← tx_raw<71:0>
VectorCount ++

ELSE

ELSE

UPDATE_COUNTERS
DelCount += FEC_PSize
VectorCount ← 0

VectorCount = FEC_DSize

UCT

UCT

Counter for data vectors and
for idle deletion are reset

Vectors are passed to the output until the
size of information bits for a CW
(FEC_DSize vectors of 72 bits) is reached

For each FEC_DSize vectors of data,
FEC_PSize vectors of idles are
marked to be deleted

Excessive idles are detected and
deleted, up to the cumulated number
“marked for deletion” – additional idles
are treated as data (ELSE path)

CLASSIFY_VECTOR_TYPE

IEEE Std 802.3, Figure 76-9

10G-EPON IDLE Deletion – ONU side

27

In US, enough IDLEs to
cover DelayBound
time are transmitted

This DelayBound value
represents the delay
sufficient to initiate the
laser and to stabilize
the receiver at the OLT

INIT
VectorCount ← 0
IdleCount ← 0
DelCount ← 0

BEGIN

UCT

DELETE_IDLE
DelCount --

T_TYPE(tx_raw) = (C+E) &
DelCount > 0

SEND_VECTOR
Tx_raw_out<71:0> ← tx_raw<71:0>
VectorCount ++

ELSE

ELSE

UPDATE_COUNTERS
DelCount += FEC_PSize
VectorCount ← 0

VectorCount = FEC_DSize

UCT

UCT

Counter for data vectors, idle vectors
and idle deletion are reset

Vectors are passed to the output
until the size of information bits
for a CW (FEC_DSize vectors of 72
bits) is reached

For each
FEC_DSize vectors
of data, FEC_PSize
vectors of idles are
added to be
deleted

Excessive idles are
detected and deleted, up
to the cumulated number
“added for deletion” –
additional idles are
treated as dataCLASSIFY_VECTOR_TYPE

UCT

NEXT_VECTOR_READY

RESET_ALIGNMENT
VectorCount ← 2
DelCount ← 0
IdleCount ← DelayBound

IdleCount > DelayBound ELSE

SEND_DATA
IdleCount ← 0

SEND_IDLE
IdleCount ++

T_TYPE(tx_raw) ≠ (C+E)

UCT UCT

Idle to be
deleted

Idle to be transmitted
(up to DelayBound for
laser On and OLT RX
tuning)

IEEE Std 802.3, Figure 76-10

EPoC IDLE Deletion – TX Side

28

How it could be done in EPoC?
 For FEC parity the same functionality could be re-used, with updated FEC parameters

for CW payload and CW parity sizes (TBD, depending on FEC decisions)
 For additional IDLE deletion due to de-rating, the same principle can be applied by

simply introducing a new independent counter:
 In fact, for each vector of encoded data, a number of IDLEs proportional to the

ratio between RMX and Reff needs to be deleted – they were inserted above XGMII
to allows enough time for the PHY transmission at rate Reff

 Two new parameters PHY_DSize e PHY_OSize are introduced (values TBD):
 Each time a vector of encoded data transits, the new vector counter for de-

rating is incremented (this is done independently of the FEC vector counter)
 When the de-rating vector counter reaches the size PHY_DSize, the IDLE

deletion counter is incremented by the size PHY_OSize
 Each time vector of IDLEs transits, deletion occurs in case the IDLE deletion

counter is larger than zero (e.g. still some IDLE to be deleted)
 See next slide for the corresponding state diagram

EPoC IDLE Deletion – CLT side

29

In red the change due to de-rating from
the original chart – final format and
proper rounding can be defined once
know PHY parameters

 FEC_PSize vectors of IDLEs are

deleted every (FEC_DSize +
FEC_PSize) vectors

 Enough IDLEs to cover DelayBound
are transmitted

 PHY_OSize vectors of IDLEs are
deleted every (PHY_OSize +
PHY_DSize) vectors

INIT
VectorCountFEC ← 0
VectorCountPHY ← 0
DelCount ← 0

BEGIN

UCT

DELETE_IDLE
DelCount --

T_TYPE(tx_raw) = (C+E) &
DelCount > 0

SEND_VECTOR

Tx_raw_out<71:0> ← tx_raw<71:0>
VectorCountFEC ++
VectorCountPHY ++

ELSE

ELSE

UPDATE_COUNTERS_FEC
DelCount += FEC_PSize
VectorCountFEC ← 0

VectorCountFEC =
FEC_DSize

UCT

Counter for data vectors and for
idle deletion are reset

FEC -> Vectors are passed to the
output until the size of information
bits for a CW (FEC_DSize vectors of
72 bits) is reached

De-rating -> For each vector passed
to the output, a number
deRate_Size of vectors carrying
idles are added for deletion

For each FEC_DSize vectors
of data, FEC_PSize vectors
of idles are added to be
deleted

Excessive idles are detected and
deleted, up to the cumulated
number added for deletion –
additional idles are treated as
data (ELSE path)

CLASSIFY_VECTOR_TYPE

UPDATE_COUNTERS_PHY
DelCount += PHY_OSize
VectorCountPHY ← 0

For each PHY_DSize vectors
of data, PHY_OSize vectors
of idles are added to be
deleted

VectorCountFEC = FEC_Dsize +
VectorCountPHY = PHY_DSize

INT_STATE_1

ELSE

UCT

INT_STATE_2

VectorCountPHY = PHY_DSize

UCT

ELSE

EPoC IDLE Deletion – CNU side

30

In red the change due to de-rating from
the original chart – final format and
proper rounding can be defined once
PHY parameters are known

 FEC_PSize vectors of IDLEs are

deleted every (FEC_DSize +
FEC_PSize) vectors

 Enough IDLEs to cover DelayBound
are transmitted

 PHY_OSize vectors of IDLEs are
deleted every (PHY_OSize +
PHY_DSize) vectors

INIT
VectorCountFEC ← 0
VectorCountPHY ← 0
IdleCount ← 0
DelCount ← 0

BEGIN

UCT

DELETE_IDLE
DelCount --

T_TYPE(tx_raw) = (C+E) &
DelCount > 0

SEND_VECTOR
Tx_raw_out<71:0> ← tx_raw<71:0>
VectorCountFEC ++
VectorCountPHY ++

ELSE

ELSE

UCT

Counter for data vectors, idle
vectors and idle deletion are reset

Excessive idles are detected
and deleted, up to the
cumulated number “added
for deletion” – additional
idles are treated as data

CLASSIFY_VECTOR_TYPE

UCT

NEXT_VECTOR_READY

RESET_ALIGNMENT
VectorCountFEC ← 2
DelCount ← 0
IdleCount ← DelayBound

IdleCount > DelayBound ELSE

SEND_DATA
IdleCount ← 0

SEND_IDLE
IdleCount ++

T_TYPE(tx_raw) ≠ (C+E)

UCT UCT

Idle to be
deleted

Idle to be transmitted
(up to DelayBound for
laser On and OLT RX
tuning)

FEC -> Vectors are passed to the
output until the size of information
bits for a CW (FEC_DSize vectors of
72 bits) is reached

De-rating -> For each vector passed
to the output, a number of vectors
carrying idles are added for
deletion

UPDATE_COUNTERS_FEC
DelCount += FEC_PSize
VectorCountFEC ← 0

For each FEC_DSize vectors
of data, FEC_PSize vectors
of idles are added to be
deleted

UPDATE_COUNTERS_PHY
DelCount += PHY_OSize
VectorCountPHY ← 0

For each PHY_DSize vectors
of data, PHY_OSize vectors
of idles are added to be
deleted

VectorCountFEC = FEC_Dsize +
VectorCountPHY = PHY_DSize

INT_STATE_1

ELSE

INT_STATE_2

ELSE

VectorCountFEC = FEC_DSize

VectorCountPHY = PHY_DSize

EPoC IDLE Deletion (baseline IV)

31

Baseline proposal IV: IDLE Deletion in the EPoC PCS in TX direction re-uses 10G-
EPON design as defined in IEEE Std 802.3, Clause 76 with
new FEC parameters for EPoC. The function is extended to
the EPoC case via additional variables for de-rating
compensation, as shown in previous slides 29 and 30.

Straw Poll #3

32

#3: IDLE Insertion in EPoC RS in the Tx direction re-uses 10G-EPON
design as defined in IEEE Std 802.3, Clause 77 with new FEC
parameters for EPoC. The functionality is extended to include de-
rating by means of a new function FEC_Derate_Overhead(∙) that
replaces the FEC_Overhead(∙) function.
 The exact modifications to the overhead formula and related

parameters are TBD.

Ad-hoc call: Yes: 7 / No: 0 / Undecided:1

TF meeting: Yes: / No: / Undecided:

Straw Poll #4

33

#4: IDLE Deletion in the EPoC PCS in TX direction re-uses 10G-
EPON design as defined in IEEE Std 802.3, Clause 76 with new
FEC parameters for EPoC. The function is extended to the EPoC
case via additional variables for de-rating compensation, as
shown in slides 29 and 30.

Ad-hoc call: Yes: 6 / No: 0 / Undecided: 2

TF meeting: Yes: / No: / Undecided:

References

34

[1] IEEE Std 802.3-2012 Specification – Clauses 76 and 77
[2] hajduczenia_05_0313: “Data Rate Adaptation” – Marek

Hajduczenia (ZTE), Andrea Garavaglia (Qualcomm)

	Data Rate Adaptation in EPoC
	Summary
	DRA in EPoC - RX
	DRA in EPoC (in picture)
	IDLE handling in Rx direction (CNU/CLT)
	IDLE Deletion (baseline I)
	IDLE Insertion – Rx direction
	IDLE Insertion (in picture)
	IDLE Insertion �(operation example)
	IDLE Insertion (SD)
	IDLE Insertion (baseline II)
	Straw Poll #1 and #2
	DRA in EPoC - TX
	Handling in the TX direction (CLT/CNU)
	IDLE Insertion – TX Direction
	EPON IDLE Insertion – OLT side
	EPON IDLE Insertion – OLT side
	EPON IDLE Insertion – ONU side
	EPON IDLE Insertion – ONU side
	10G-EPON FEC_Overhead function
	EPoC IDLE Insertion – CLT side
	EPoC IDLE Insertion – CNU side
	EPoC FEC_Overhead Function
	EPoC IDLE Insertion (baseline III)
	IDLE Deletion – TX Direction
	10G-EPON IDLE Deletion – OLT side
	10G-EPON IDLE Deletion – ONU side
	EPoC IDLE Deletion – TX Side
	EPoC IDLE Deletion – CLT side
	EPoC IDLE Deletion – CNU side
	EPoC IDLE Deletion (baseline IV)
	Straw Poll #3
	Straw Poll #4
	References

