FEC Code Evaluation Methodology for EPoC

Richard Prodan, BZ Shen (Broadcom) Stefan Brueck, Tom Richardson (Qualcomm) Bernard Arambepola (Intel) (and others)

Evaluation Criteria

- Complexity measures
 - Codeword size
 - Sub-matrix size (lifting size for parallelism)
 - Number of edges per transmitted bit (in Tanner graph)
 - Number of parity check equations per transmitted bit
- Performance measures in channel impairments
 - AWGN
 - AWGN + downstream burst error events
 - AWGN + upstream burst error events

Downstream LDPC Code Parameters

- Codeword size of 16200 bits
- Code Rate of 8/9
- This gives 14400 information bits (payload)

Simulation Methodology

- Decoding procedure
 - Based on standard floating-point iterative sum-product algorithm
 - Maximum of 20 and 30 flooding iterations (to avoid biasing toward slow-converging codes using unlimited iterations)

Evaluation Parameters

- Modulation order
 - 4096 QAM downstream
 - 1024 QAM upstream
- Two OFDM symbol durations
 - 20 μs and 40 μs
- Cyclic prefix
 - 2.5 μs
- WER target of 10⁻⁶
- BER target of 10⁻⁸
- AWGN SNR threshold with and without burst error events
- Channel assumptions for burst error events
 - Downstream burst noise: 16 μs at 20 dB SNR or 16 μs at 5 dB SNR (two consecutive OFDM symbols)
 - Upstream burst noise: 1 μs at 0 dB SNR (1 OFDM symbol) or
 10 μs at 10 dB SNR (two consecutive OFDM symbols)

Impulse Noise Model SNR Calculation

- Case I: the burst hits one OFDM symbol
 - SNR experienced by all sub-carriers in the OFDM symbol due to burst noise only is:

 $SNR_{burst} = SNR_{impulse} - 10 \log (T_{burst} / T_{OFDM})$

/	T _{OFDM} :	OFDM symbol duration without cyclic	
	prefix		
	T _{CP} :	duration of cyclic prefix	
	T _{burst} :	burst duration	
	SNR _{impu}	_{ilse} : impulse SNR	

SNR experienced by all sub-carriers in the two OFDM symbols due to background noise only is: $SNR_{background} = SNR_{AWGN} - 10 \log (1 - [T_{burst} / T_{OFDM}])$

Impulse Noise Model SNR Calculation

- Case II: the burst hits two consecutive OFDM symbols equally
 - SNR experienced by all sub-carriers in the two OFDM symbols due to burst noise only

is:

 $SNR_{burst} = SNR_{impulse} - 10 \log (0.5 * (T_{burst} - T_{CP}) / T_{OFDM})$

_	T _{OFDM} : prefix	OFDM symbol duration without cyclic	-
	T _{CP} :	duration of cyclic prefix	
	T _{burst} :	burst duration	
	SNR	_{llse} : impulse SNR	
	inipa		

SNR experienced by all sub-carriers in the two OFDM symbols due to background noise only is: $SNR_{background} = SNR_{AWGN} - 10 \log (1 - [0.5 * (T_{burst} - T_{CP}) / T_{OFDM}])$

Impulse Noise Model SNR Calculation

- SNR on the burst noise impacted subcarrier in the presence of background AWGN is:
 - $SNR_{sub-carrier} = -10 \text{ Log } (10^{[-SNR_{burst}/10]} + 10^{[-SNR_{background}/10]})$

SNR_{sub-carrier}: SNR experienced by all sub-carriers in the OFDM symbol SNR_{background}: Background (thermal) Additive White Gaussian noise contribution SNR_{burst}: impulse SNR contribution

- SNR assumptions for downstream simulation:
 - Burst length is 16 μs spanning two OFDM symbols equally with a 2.5 μs cyclic prefix
 - SNR during the burst event is either 20 dB (moderate) or 5 dB (strong) impulse noise
 - SNR outside the burst event is the background AWGN

Time Interleaving Model

- Simulations show the minimum value for interleave depth N in order for BER to reach 10⁻⁸
- Simulated cases

Case 1: one OFDM symbol is impacted:
 N sub-carriers apart

: Burst impacted sub-carriers

: Non-impacted sub-carriers

Case 2: two consecutive OFDM symbols are impacted equally:

N sub-carriers apart

Burst Noise Performance Metrics

- For each burst noise condition, find the minimum interleaver depth that is needed to achieve
 - a BER of 10⁻⁸
 - a WER of 10^{-6}
- Plot the AWGN SNR vs. BER for the minimum interleaver depth to achieve a BER of 10⁻⁸
- Plot the AWGN SNR v6. BER for the minimum interleaver depth to achieve a WER of 10⁻⁶
- This will yield the minimum interleaver depth and background AWGN SNR (Depth @ SNR (dB)) to achieve target objective error rates

Depth @ SNR to achieve a BER of 10⁻⁸

Depth 1 < Depth 2 < Depth 3

Thank You