Bonding at PHY-Layer

of N× DFT Blocks

David Barr Entropic Communications

<u>Disclaimer</u>

- This presentation tries to be non-controversial
 - we seem to have consensus already on the need for Bonding at PHY-Layer
 - Describes *how* Bonding at PHY-layer could be done
 - more specifically, constraints on HOW the specification text would be written
 - combining two or more [192MHz] DFT Blocks, appearing from above as single link
 - intends to apply to both upstream and downstream
 - NOT when or how many to Bond
 - does NOT address "Generational" issues
 - does NOT address which DFT blocks used to/from particular CNUs vs. time

Synchronization of Nx DFT Blocks

- Transmitter synchronizes two or more DFT Blocks
 - » each transmitted at different RF center frequency
 - Macro-level synchronization, to help avoid out-of-order delivery
 - symbol boundaries synchronized across blocks
 - » shared symbol structure: same duration of cyclic prefix, gaps (if any), preamble (if any)
 - » preserves coherency of RF subcarriers across blocks (see below)
 - bonded transmissions on two+ DFT Blocks begin & end at same time
 - » i.e., at same symbol boundaries, avoiding skew in ordering at both endpoints (Tx & Rx)
 - Micro-level synchronization, for coherency / orthogonality
 - Tx clocks synchronized across blocks (i.e., derived from same reference)
 - to ensure coherency of RF subcarrier spacing across blocks
 - » preserves orthogonality so MSOs can allocate adjacent RF Blocks

Spreading Payload Bits across Nx DFT Blocks

- Assume some upper layer payload to be transmitted over Nx DFT Blocks
 - How to avoid introducing time-skew when spreading payload bits?
 - How many payload bits go into each DFT Block?
 - RF center frequency is different for each DFT Block
 - » at opposite ends of the spectrum, even
 - so can expect different carrying capacity for each Block
 - » different attenuation, impairments, notching,...
 - » different MCS = different modulation density or different FEC coding-rate
 - Split payload bits [unequally] N-ways, according to capacity of each Block
 - carrying capacity = # info bits per symbol (not including parity bits)
 - carrying capacity = (FEC code-rate) $\times \Sigma$ {bitloading per subcarrier}
 - DFT Block, carries a Fraction, of the payload bits
 - where $Fraction_i = (capacity of Block_i) \div (capacities of Block_1 + Block_2 + ... + Block_N)$
 - Note: Similar to how a wideband PHY spanning all Nx Blocks might distribute bits
 - <u>Result</u>: Payload begins and ends simultaneously on all N× Blocks
 - i.e., no out-of-order transmission or reception
 - » eliminates complexity due to skew of [DOCSIS-like] Layer-2 bonding

FEC for Nx DFT Blocks

- FEC applied independently within each participating DFT Block
 - since each DFT Block may have different code-rate
 - may be at opposite ends of the spectrum, with different attenuation or impairments
 - codewords would NOT span boundary between DFT Blocks
 - codeword optimizations can be applied within each DFT Block
 - » such as those described in pietsch_01a_0912.pdf
 - maintains macro-level synchronization
 - all participating DFT Blocks start and stop transmitting simultaneously
 - » i.e., on the same symbol boundaries
 - no out-of-order transmission or reception
 - Interleaver (if any) could perhaps be applied similarly—needs further study
 - interleaving not always needed (e.g., TDD at High-RF?)
 - when needed, is beneficial to preserve macro-level synchronization among Blocks

Summary / Conclusions

- Described how bonding of Nx DFT Blocks could be done (not when or how many)
 - Macro-level synchronization among participating DFT Blocks
 - » helps avoid out-of-order delivery
 - Micro-level synchronization for coherence & orthogonality
 - » enables MSOs to allocate adjacent RF Blocks
 - Payload bits divided [unequally] N-ways (proportional to carrying capacity of each Block)
 - » so bonded transmissions start & stop simultaneously on all participating DFT Blocks
 - FEC applied independently within each DFT Block
 - » maintains in-order delivery from all participating Blocks
- These same constraints enable vendor-differentiated PHY implementations
 - vendors can implement via single monolithic PHY implementation
 - e.g., UHF ADC approach (spanning Nx [disjoint] DFT Blocks)
 - vendors can implement via bonding of multiple single-Block PHYs
 - » e.g., to address single or two-Block CNUs
 - » e.g., to address operation at High-RF (above Nyquist frequency of wideband ADCs)
- Different equivalent approaches to writing specification text:
 - Text describing single-Block OFDM
 - plus text describing how to bond two or more DFT Blocks
 - Text describing single full-band multi-Block OFDM
 - with the constraints described above (synchronization, FEC,...)