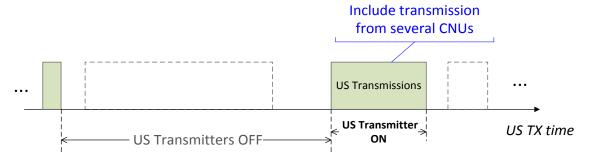
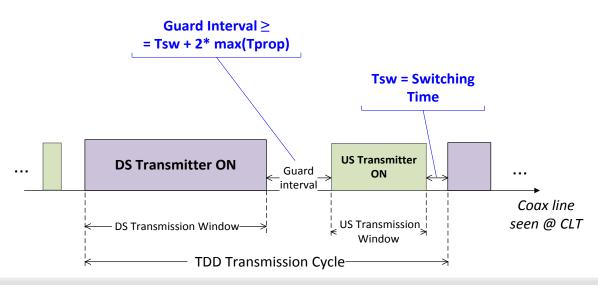
Further Details on TDD

Andrea Garavaglia (Qualcomm)

Supported by

- Charaf Hanna (ST)
- Boris Brun (Harmonic)


PAGE 2 | IEEE 802.3bn San Antonio, TX 12-15 November 2012


Background

- During the last IEEE 802.3bn meeting, there has been a large number of presentation from Chinese MSO advocating the need for a TDD solution in EPoC, which is needed for their deployments use case
- This reinforce the overall necessity of a TDD mode of operations, as already highlighted during the Study Group and reflected in the EPoC objectives and some North America operator interest
- An approach for including TDD in EPoC [1, 2] has been recently presented and discussed, suggesting a separate MPCP clause for TDD and some additional changes for configuration, management and for PHY functionality support
- In this presentation, further details are elaborated in this regard and a preliminary assessment of specification impact is included

TDD Timeline on the wire

PAGE 4 | IEEE 802.3bn San Antonio, TX 12-15 November 2012

TDD design at MAC-Control – Principles

- As illustrated in [1, 2], a proposed approach for TDD is to implement it via modifications of the MAC-Control
 - The main difference from FDD is in the downstream.
- Basic Principles for TDD at MAC-Control:
 - MAC-Control decides on downstream operations based on configured TDD partitioning and guard time in the CLT
 - Upstream uses GATE/REPORT as for FDD mode, whereby the CLT simply stops sending data during the downstream transmit gap – no DS transmission when US is transmitted or during guard time intervals
 - Data Detector in CLT PCS needs to be modified to accommodate switching between transmit and receive in CLT

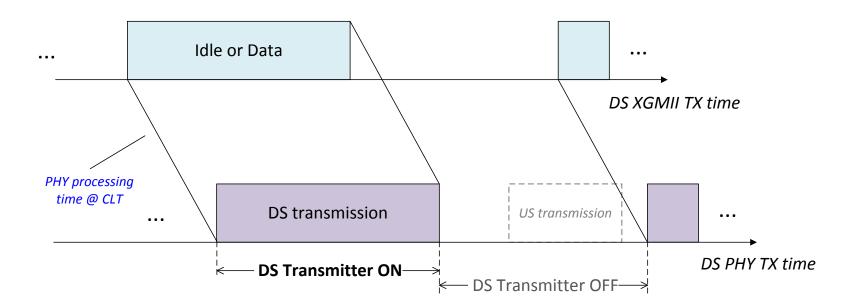
TDD design at MAC-Control – Impact

- Impacts to the CLT MAC-Control entities
 - Awareness of TDD Cycle (US/DS partitioning and guard time)
 - Disable transmission of MAC data packets in DS when the US transmission window is open
 - Required changes: TDD MPCP "mirror" clauses of clause 77.2.2 and 77.2.4
- Impacts to the CNU MAC-Control entities
 - None

TDD design at MAC-Control – DS Transmission

- During the downstream transmit window, Multipoint Transmission Control operates as usual (see clause 77) providing arbitration between the different MAC clients in the CLT via MPCP
- During the downstream transmission gap, the CLT switches from TX mode to RX mode and no data flows in the downstream
 - MAC Control Client disables the arbitration and put the MPCP in suspended status, so no MAC Client can send data
 - To achieve that a new signal is needed (see [2])
- In the PCS, idle deletion takes place and then data detector module is included similar to upstream case in CNU
 - The role of the data detector is to provide indications of switching between TX and RX in the PHY

DS Transmission – Specification Impact


- Impacts to the CLT PCS (in addition to what previously mentioned)
 - Needs to trigger the switch between DS (TX) to US (RX) mode (and vice versa)
 - When the DS window is open the PHY layer can transmit also PHY layer signaling
 - When the US window is open the PHY layer shall not transmit also PHY layer signaling
 - Need to handle idle deletion for TDD cycle timeline (e.g. via configuration for TDD parameters)
 - Data detector in the PCS identifies the DS and US window
 - Required changes: EPOC PCS clause "mirror" to clause 76.3.2.5

TDD design at MAC-Control – DS Reception

- CNU RX needs to know when to switch from TX -> RX (and backwards) for the PHY to operate correctly
 - In US, not transmitting does not automatically imply receiving
 - This could be achieved done with special GATE message as proposed in past contributions
 - In this case though it remains unclear how the information will reach the CNU PHY to switch
 - MDIO could be too slow to track any switch dynamically
 - Alternatively the TDD partitioning is exchanged via PHY configuration (via PHY-Link) as part of the PHY parameters – PHY timing advance performed in the same procedure
 - This alternative is preferable and simpler

How does it work

- TDD configuration is established (e.g. via OAM) in the CLT and indicated to the MAC Control agent
- The CLT MAC Control can start transmission according to the configured TDD cycle, which propagates to the CLT PHY
- Downstream is operating properly and CNU can start connecting

The TDD cycle timeline is propagated from MAC Control to PHY at CLT start

PAGE 10 IEEE 802.3bn San Antonio, TX 12-15 November 2012

How does it work (cont.)

- At power up, the CNU runs the PHY auto-negotiation procedure
 - PHY parameters are exchanged, with proper configuration for TDD (TDD downstream and upstream transmission, TDD bandwidth, guard intervals, etc.)
 - PHY TDD timeline is aligned
- At completion of the PHY procedure, MAC is activated and CNU starts operating in TDD mode
- The first MPCP procedure to run is the CNU registration

DS Reception - Specification Impact

- Impacts to the CNU PCS
 - Needs to trigger the switch between DS (RX) to US (TX) mode (and vice versa)
 - When the DS window is open the CNU PHY layer shall listen the PHY layer signaling (RX mode)
 - When the US window is open the CNU PHY layer shall not listen to the PHY layer signaling (TX mode)
 - Required changes: EPOC clause on PHY layer set up
- No additional changes to MPCP registration procedure needed

Further Enhancements

- Reporting process and REPORT message:
 - Depending on the adopted channel model and available TDD configurability ranges
 - may need to extend RTT range
 - may need to extend the upper bound of reported amount of data in the queues

PAGE 13 IEEE 802.3bn San Antonio, TX 12-15 November 2012

References

- [1] law_01_1012: "IEEE P802.3bn Architecture" Juan Montojo (Qualcomm), David Law (HP) and Ed Boyd (Broadcom)
- [2] law_01_1112: "IEEE P802.3bn Architecture" "IEEE P802.3bn Architecture" Juan Montojo (Qualcomm), David Law (HP), Marek Hajduczenia (ZTE), Ed Boyd (Broadcom)