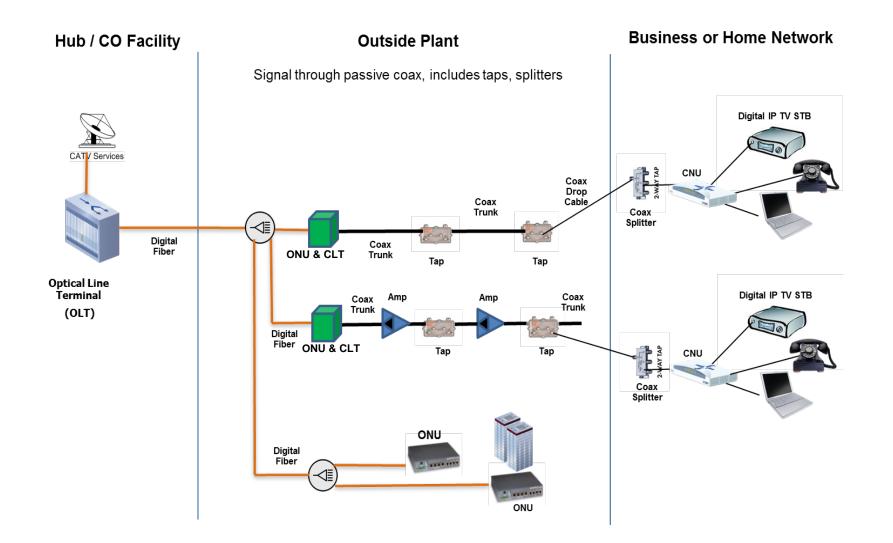


Proactive Network Maintenance for EPoC

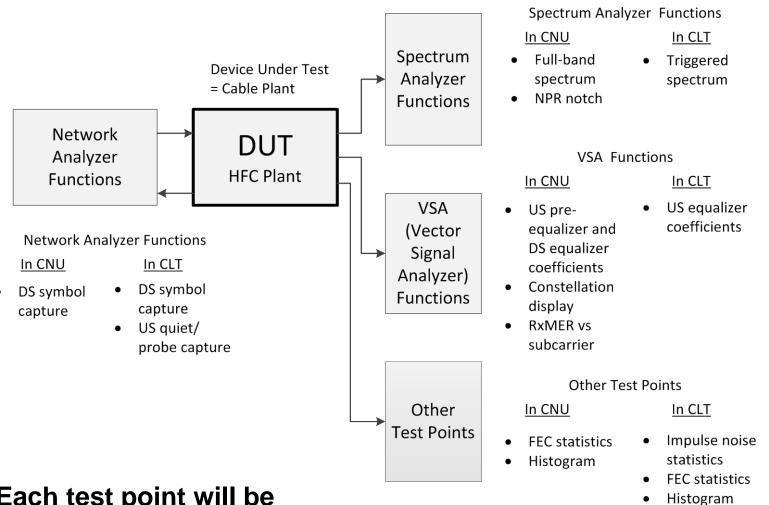
Contributors: Bruce Currivan, Richard Prodan, Thomas Kolze, Hesham ElBakoury, Bernard Arambepola, Belal Hamzeh, Mark Laubach

www.broadcom.com


SUMMARY

- Cable operators require remote visibility into operation of cable plant and equipment
- Insert test points into CLT and CNU to enable characterization and troubleshooting of HFC plant
- Provide characterization of cable plant response, linear and nonlinear, and noise/interference evaluation
- Suport remote proactive troubleshooting of plant faults
- Goal is improved reliability and maximum throughput from well-maintained plant

EPOC SYSTEM DIAGRAM



Source: EPoC Architecture Specification

TEST POINTS FOR HFC PLANT

 Each test point will be described at end of slide deck

CABLELABS PROACTIVE NETWORK MAINTENANCE (PNM) WORKING GROUP

Approach

- Collect equalization coefficients and other metrics
- Measure wideband spectrum
- Analyze to locate impairments in cable plant

Track record

- Reliably finds impairments in cable plant -- often before outage occurs
- High-resolution spectrum
- Strong reception by MSOs

InGeNeOs = Intelligent Generation-Next Operational Systems Working Group at CableLabs, fka Proactive Network Maintenance (PNM)

Upstream adaptive equalization

DOCSIS 1.1, circa 1999

CableLabs Proactive Network Maintenance WG

2007

Comcast Scout Flux Tool

November 2009

Spectrum Analysis MIB definition

Late 2012

Comcast Flux / Spectra Tool

March 2013

PNM TOOL IMPLEMENTATIONS ACROSS CABLE INDUSTRY

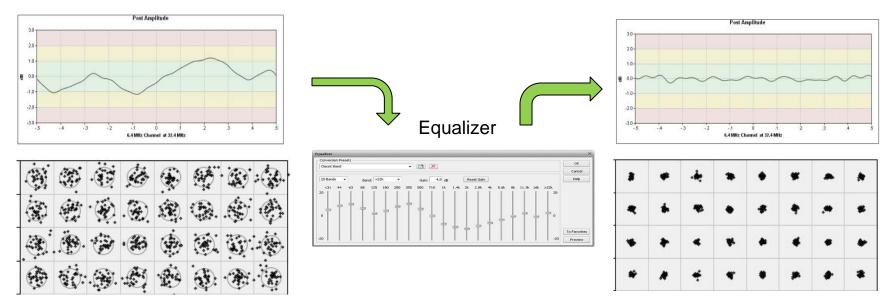
- CableLabs Pre-EQ / SA Reference
- Charter DRUM / Node Slayer
- Comcast Scout Flux / Spectra
- Cox Edge Health
- Motorola Pre-EQ Response Tool
- Rogers F-Finder
- Time Warner Cable ROI / Unified

UPSTREAM PRE-EQUALIZATION STEPS

1) Adapt Headend Equalizer to Channel

2) <u>**Copy</u>** Coeffs Into Pre-Equalizer (Update Periodically)</u>

3) <u>Send</u> Data Traffic Upstream



CNU pre-equalizer does most of correction

Pre-Equalized Frequency Response

CLT post-equalizer cleans up residual

Post-Equalized Frequency Response

PLANT FAULT LOCALIZATION USING PRE-EQUALIZER TAPS

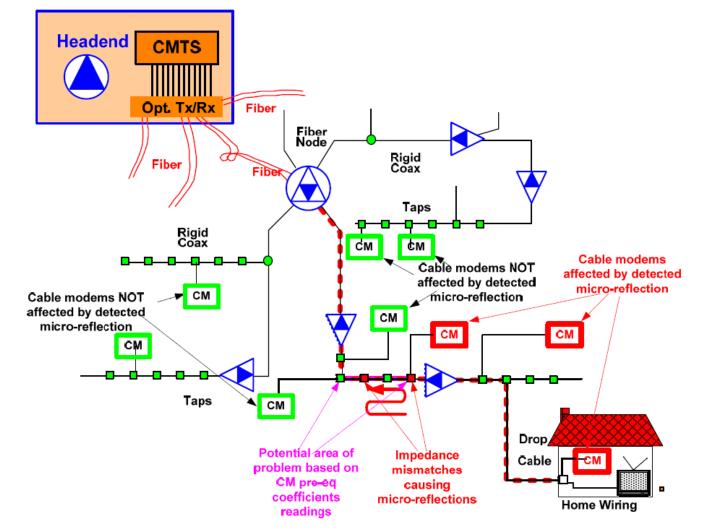


Figure 22 - Correlation of Topology with Distortion to Provide Fault Localization

Source: PNM Best Practices Document

MAINTENANCE RESPONSE VS. ECHO LEVEL

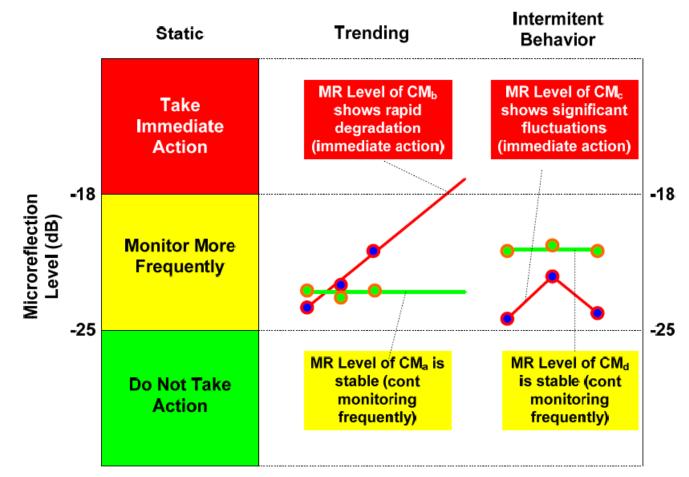
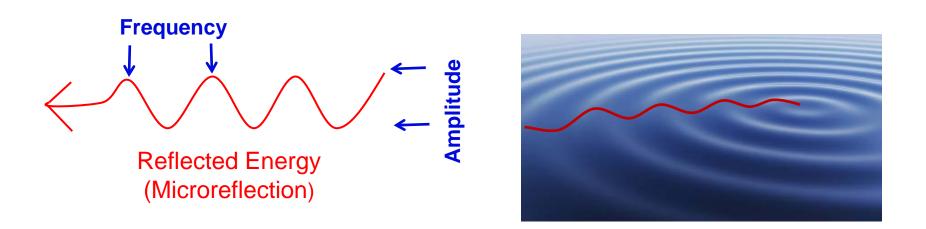


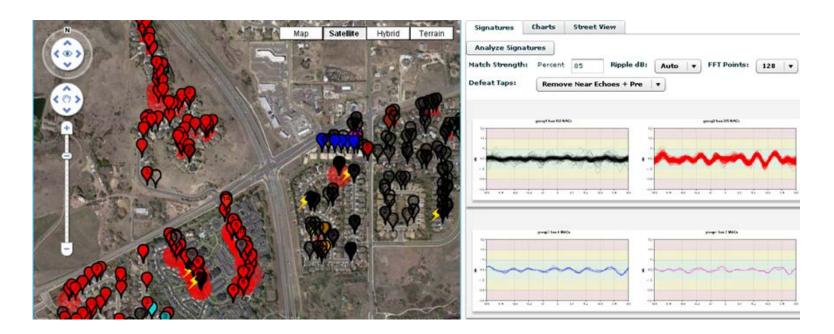
Figure 28 - Severity Classification Mechanisms

MR = micro-reflection

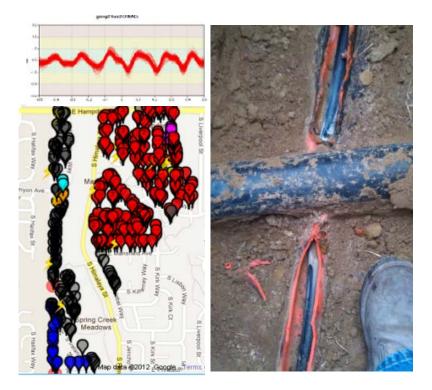

Source: PNM Best Practices Document

• Use signature clustering to locate common plant faults

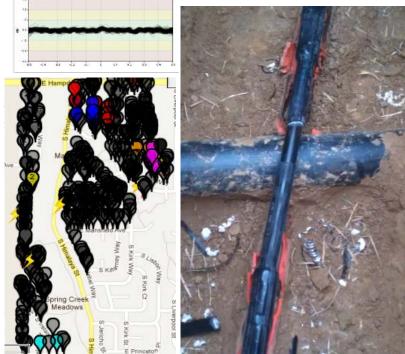
CALCULATING DISTANCE TO FAULT


- Equalizer response provides precise echo measurements so distances can be calculated
- Time-Domain Reflectometer (TDR) functionality

TDR FAULT LOCATION EXAMPLE

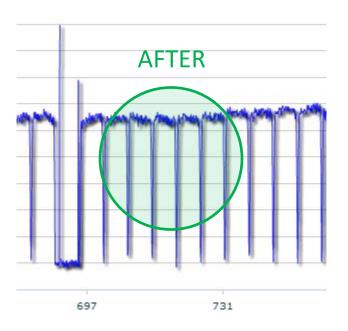

- Cable fault is one of the reflectors in a "cavity" consisting of at least 2 reflectors
- Measure TDR distance from one end of cavity: line amplifier, etc.

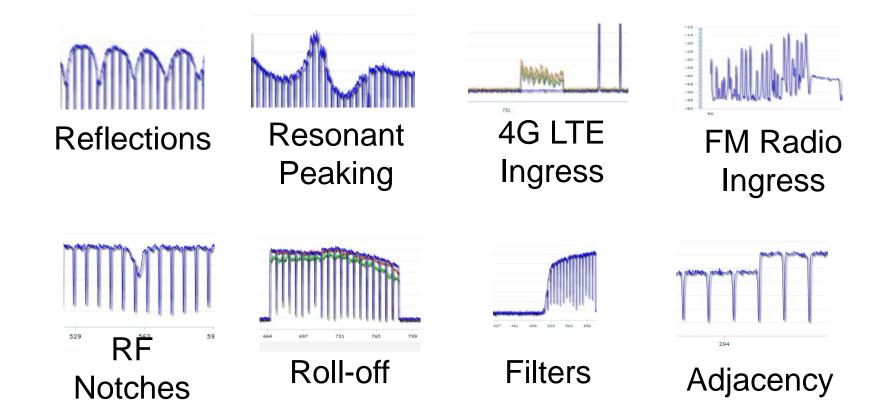
FIXING BROKEN BURIED CABLE



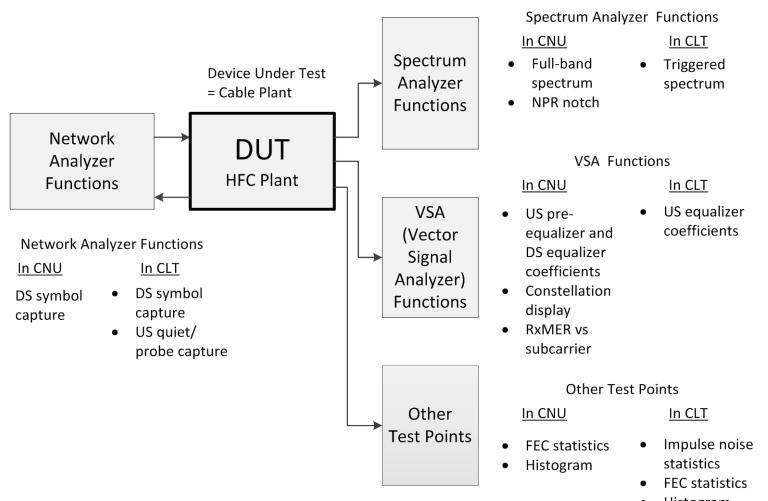
BEFORE

AFTER


owned has 202 NAC.



Frequency (MHz)



FAULTS DETECTABLE WITH FULL-BAND SPECTRUM ANALYZER IN EVERY CPE (CNU)

DESCRIPTION OF PROPOSED PNM TEST POINTS BROADCOM.

• Histogram

PNM DOWNSTREAM TEST POINTS

- <u>Symbol Capture</u>: Capture wideband OFDM symbol at input and output of cable plant, solve for plant response
 - Requires Trigger Message to synchronize capture at CLT and CNU, using PHY Link Channel (PLC) as a timing reference
 - Alternatively, can define downstream probe and quiet symbol analogous to upstream
- <u>CPE Spectrum Analyzer</u>: Power spectrum of full downstream band
- <u>Noise Power Ratio (NPR) Measurement</u>: Examine spectrum of notch to see intermods and ingress
- <u>Channel Estimate</u>: Linear response of channel at CNU receiver
- Constellation Display: Shows impairments to QAM constellation
- <u>Receive Modulation Error Ratio (RxMER) Per Subcarrier</u>: Profile of SNR at receiver slicer vs frequency
- <u>FEC Statistics</u>: Codeword error ratio for each profile in use by CNU; CRC-40 error statistics
- Histogram: Shows nonlinear channel effects

PNM UPSTREAM TEST POINTS

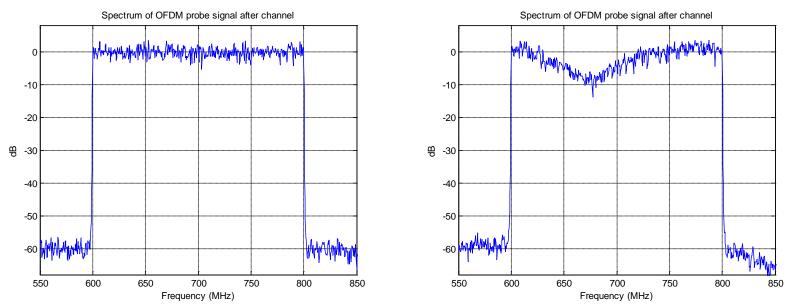
- <u>Capture for Probe Symbol</u>: Send wideband probe symbol through cable plant, solve for plant response
- <u>Capture for Quiet Period</u>: View underlying noise floor when no desired signal is being transmitted
- <u>Triggered Upstream Spectrum Analyzer</u>: Power spectrum of full upstream band
- <u>Impulse Noise Statistics</u>: Power and duration of impulse events exceeding programmable threshold
- <u>Equalizer Coefficients</u>: Pre- and post-equalizer, giving linear response of cable plant
- <u>FEC Statistics</u>: Codeword error ratio for selected user; CRC-40 error statistics
- Histogram: Shows nonlinear channel effects

FEC STATISTICS PROVIDED

- Uncorrectables: Number of codewords that failed CRC-40 checksum, and number of total codewords
- Codeword error ratio vs time (seconds): CER in 1-second intervals for rolling 10-minute period
- Codeword error ratio vs time (minutes): CER in 1-minute intervals for rolling 24-hour period
- Short-term statistics: Report results when M errors have occurred or N codewords have been processed, whichever comes first
- RED/YELLOW/GREEN summary CNU status: Colors to be defined based on thresholds
- Upstream statistics are per-user; downstream are per-profile

RXMER MEASUREMENT

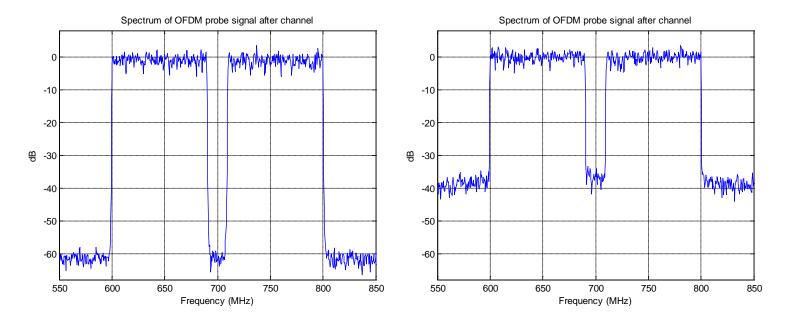
- Receive modulation error ratio (RxMER) is a measure of the average size of the "noise ball" surrounding each QAM constellation point (cluster variance).
 - It is reported in dB for each subcarrier frequency.
- RxMER is measured using the scattered pilots, which visit all subcarriers.
 - Pilots are not subject to symbol errors as data subcarriers would be.
 - This gives an accurate MER measurement over a wide dynamic range.
- RxMER is defined as the ratio of the average power of the equalized QAM constellation to the average error-vector power.
 - The error vector is the difference between the equalized received pilot value and the known correct pilot value.
- The noise power of zero-valued subcarriers is also measured, and is expressed as an equivalent unequalized RxMER value.



Wideband probe at

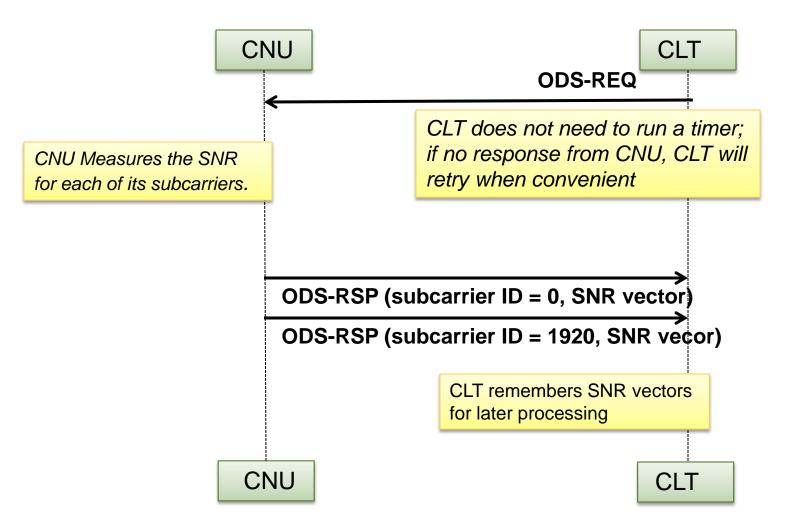
output of cable plant

Wideband probe at input to cable plant


- With known input and output samples, channel can be characterized including linear and nonlinear effects (compression, laser clipping, intermods(CSO, CTB), common path distortion, ingress, group delay, plant leakage, ...)
- Probe may be special probe symbol (upstream) or captured normal OFDM data symbol (downstream)

EXAMPLE: NOISE POWER RATIO (NPR)

NPR probe through clean plant


NPR probe after 3rd order nonlinearity

Notch fills in with intermod products

POSSIBLE OFDM DS SPECTRUM REPORTING TRANSACTION

Source: Hesham ElBakoury

PNM OVERVIEW SUMMARY

- Cable operators require visibility into plant and equipment performance
 - PNM has been adopted as the approach
- Provide characterization of cable plant response, linear and nonlinear distortions, and analysis of noise/interference
- Support remote proactive troubleshooting of HFC plant
- Goal is improved reliability, throughput and user experience
- Recommendation:
 - Need to design-in test points in CLT and CNU that support PNM needs

To support PNM, P802.3bn EPoC would need to provide the following:

RxMER measurement support in the CNU

- Per sub-carrier, ratio of the average power of the equalized QAM constellation to the average error-vector power. For pilots, the error vector is the difference between the equalized received pilot value and the known correct pilot value.
- Straightforward, specifics are T.B.D.
- Performance monitoring, counters, measurements in CLT and CNU Rx
 - Upstream and Downstream FEC performance and other counters
 - Overview on next pages.

Additional consideration

 Add "Trigger" message in the downstream PLC and measurement support in CNU

Outside of the P802.3bn Specification

- OAM/eOAM messages for managing/gathering PNM statistics
- Suggestion: CableLabs address this activity

Overview – Specifics are T.B.D.:

- The CNU would need to be capable of providing the following downstream performance metrics:
 - Uncorrectable codewords: Number of data codewords that fail CRC-40 check
 - Correctable codewords: Number of data codewords that failed pre-decoding LDPC syndrome check and passed CRC-40 check
 - Unreliable PLC Codewords: Number of PLC codewords that failed LDPC post-decoding syndrome check
 - Total number of data FEC codewords
 - Total number of PLC codewords
 - Total number of MAC packets
 - Start and stop time of analysis period.
- The CNU would need to be capable of providing the following downstream FEC summaries on each OFDM channel being received by the CNU:
 - Codeword error ratio versus time (seconds): Ratio of number of uncorrectable codewords to total number of codewords in each one-second interval for a rolling 10-minute period (600 values).
 - Codeword error ratio versus. time (minutes): Ratio of number of uncorrectable codewords to total number of codewords in each one-minute interval for a rolling 24-hour period (1440 values).
 - Ending time of rolling period.

Overview – Specifics are T.B.D.:

- The CLT will need to be capable of providing the following FEC statistics for any single upstream user:
 - Error-Free Codewords: Number of codewords that passed CRC-40 check
 - Uncorrectable Codewords: Number of codewords that failed CRC-40 check
 - Corrected Codewords: Number of codewords that failed pre-decoding syndrome check, but passed CRC-40 check
 - Total number of FEC codewords
 - Total number of MAC packets
 - Start and stop time of analysis period
- The CLT MUST be capable of providing the following FEC summaries over a period of up to 10 minutes for any single upstream user:
 - Total number of seconds
 - Number of errored seconds (seconds during which at least one unreliable codeword occurred)
 - Count of codeword errors (uncorrectable codewords) in each 1-second interval
 - Start and stop time of summary

Overview – Specifics and adoption are T.B.D.:

- Add a trigger message to the downstream PLC
 - For synchronizing a measurement event between the CLT and group of CNUs
 - Perform a capture at a specific time aligned with the PLC frame
 - OFDM symbol time-domain data points equal to the FFT length in use

Can likely adapt D3.1 PLC Trigger for use in P802.3bn EPoC

- PNM is a requirement in the cable industry
- P802.3bn EPoC will need to participate in PNM
- Further proposal work should include
 - Support for required downstream and upstream Rx measurements
 - Evaluation and consideration for use of the PLC trigger facility

SOME REFERENCES

- Scout Flux / Spectra: Empowering Operations With Equalization and CPE Spectrum Analysis, Presentation by Comcast – Larry Wolcott, and Broadcom – Bruce Currivan (excerpts in this package)
- CableLabs DOCSIS Best Practices and Guidelines (excerpts used in this package)
 - http://www.cablelabs.com/specifications/CM-GL-PNMP-V02-110623.pdf

Thank You