DOWNSTREAM BASELINE PROPOSAL

Authors: Mark Laubach, Richard Prodan, Avi Kliger, Tom Kolze, BZ Shen, Leo Montreuil

SUPPORTERS

- Matt Schmitt, CableLabs
- Curtis Knittle, CableLabs
- Saif Rahman, Comcast

INTRODUCTION

- We laubach_3bn_04_1113.docx (also as .pdf) for consideration as Baseline Proposal for the P802.3bn downstream.
- This contribution follows the spirit expressed at the York interim meeting of submitting elements for P802.3bn technical consideration from the DOCSIS 3.1 PHY with a goal to enable "common component architecture" in the industry:
 - Downstream PHY data and PLC (portions of Section 7.5)
 - Note: some elements are shared with the D3.1 upstream PHY, those text subsections have been rolled into this baseline proposal for completeness
 - Downstream NCP (Section 8.3)
 - Only FDD mode is detailed at this time
- Past P802.3bn Task Force decisions are represented in this baseline proposal
 - One difference will be a proposal for changing the existing PLC Next Codeword Pointer (NCP) method to a different NCP approach

OVERVIEW OF DIFFERENCES AND T.B.D.'S

- Downstream PHY functional diagram as presented in kliger_3bn_01_1113.vsd
- Downstream line encoding and LDPC FEC
 - Already in PCS work in progress in the Task Force
- Scrambler / Randomizer and Frequency Interleaver
 - T.B.D. next meeting pending coordination with individuals from other affiliations
- Symbol Mapper
 - Constellations as per <u>prodan_3bn_02_1113.pdf</u> to align with EPoC LDPC FEC decisions
- Downstream Profiles
 - Reduced to single profile for FDD
- Windowing adds extra value as per montreuil_01a_0113.pdf
- Fidelity and Electrical requirements in progress by another proposal effort: rahman_saif_3bn_01_1113.pdf

OVERVIEW OF DIFFERENCES, CONTINUED

Proposal to use a new NCP architecture

- Moves data codeword processing within the demodulation processing pipeline of the system
- Separation from PLC content
 - PLC remains as providing the configuration of "where/how to (de)modulate" and for downstream frame alignment, time stamp, etc.
- EPoC FDD will use a single profile; i.e., Profile A
 - All other Profile ID values, as well as update functions will be reserved
 - NCP fields remains for alignment to "common component architecture"
- Adds FEC and 24-bit CRC (to PMA)
 - Note: shares LDPC mother code with Initial Ranging

PLC channel structure details

- Preamble updated as per montreuil_3bn_01_0713.pdf
- PLC FEC as per <u>shen_3bn_01_0713.pdf</u>
 - Note: shares LDPC mother code with Fine Ranging
- PHY coding only and spectrum details.
 - No PLC content in this baseline proposal,

NEXT CODEWORD POINTER PROPOSAL

Move to the following NCP architecture:

- NCP located in data sub-carriers
- Processed by data channel processing pipe-line
- NCP blocks start from "top down"
- User data codewords from "bottom up"

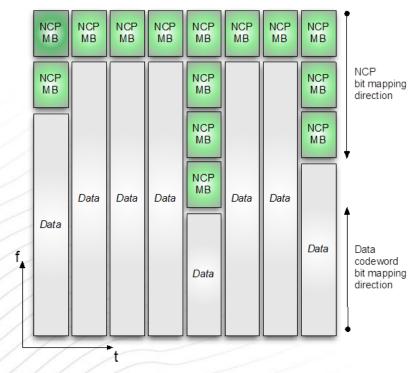


Figure 2-7 - Data and NCP Prior to Interleaving

NCP MESSAGE BLOCK STRUCTURE

- NCP Message Block (MB) has two parts:
 - 24-bit flag and pointer fields
 - 24-bit CRC
- Each 24-bit sub-block is protected by an LDPC (48, 24) FEC
 - Shares LDPC mother code with proposed upstream ranging FEC. See shen_3bn_01_1113.pdf

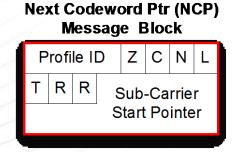


Figure 2–8 - NCP Message Block

NCP MB FIELD DETAILS FOR EPOC

- Profile ID Only value "0" Profile A to support a single FDD profile, other values reserved
- Data Profile Update C-bit set to "0", other value reserved
- Use of Z, N, T, and R fields for further study.

Field	Size	Description
Profile ID	4 bits	Profile ID for the data channel 0 = Profile A 1 -15 = reserved
Z	1 bit	Zero Bit Loading 0 = subcarriers follow profile 1 = subcarriers are all zero-bit-loaded
С	1 bit	Data Profile Update 0 = set to 0 1 = reserved
N	1 bit	NCP Update 0 = use even profile
L	1 bit	for the next symbol rather than the current symbol. Last NCP Block 0 = This NCP is followed by another NCP. 1 = This is the last NCP in the chain and is followed by a CRC.
Т	1 bit	Directed Test 0 = this codeword is not suitable for directed profile testing by CNUs 1 = this codeword is suitable for directed profile testing by CNUs
R	1 bit	Reserved
Subcarrier pointer	13 bits	This is the number assigned to the first subcarrier used by the codeword. The maximum value is 0x1FFE = 8190. The value 0x1FFF is reserved as a null pointer.

NCP PROPOSAL SUMMARY

- Codeword alignment completely in data channel processing
 - Separation from PLC content
 - NCP Message Block is a PMA -> peer PMA protocol element
- Supports TDD requirement for multiple profiles (TD #19) if needed
- Lays groundwork for future proofing
- Aligns "common component architecture" element with D3.1 PHY Example:
- NCP moves as part of Symbol Mapper. See <u>kliger_3bn_02b_1113.vsd</u>.
 - Calculates Subcarrier Pointer, L field, CRC-24, and NCP FECs
- Appropriate NCP flags/fields passed with codeword request and indication

NOTE:

Future work can investigate reducing overhead for FDD operation

NCP APPROACH COMPARISON

[New Slide]

NCP in the PLC

- Appears once every PLC frame (2.5-5 mSec)
- Points to the next codeword in next frame
- Low overhead
- Doesn't affect data throughput

NCP in the Data path

- A pointer per CW
- No layer mixing: Part of the data path, and interleave with data
 - Processing tight to data simpler implementation
- Fast recovery in case of symbol sync loss
- "Common component architecture" with DOCSIS3.1
- Overhead of 1% with 192 MHz
- Fixed averaged overhead over a number of CWs.
- Provides flags for future use:
 - Zero Bit Loading, Directed Test, Profile Update/Change

NCP APPROACH SUMMARY

[New Slide]

CW pointer carried by	PLC	NCP
Overhead	~0	1%
Runs the data path (no layer mixing)	no	yes
Recovery time (uSec)	2800	22
Common Architecture	no	yes
Fixed data rate	yes	yes
Trigger to profile switching	no	yes

- The attached baseline proposal contains functional descriptions for aspects of the downstream EPoC PHY and an NCP update proposal
 - Uses past P802.3bn technical decisions
 - Leverages "common component architecture" where possible
 - Includes detailed NCP description that is a change from previous technical decision
 - Asking that the TF adopt this proposed NCP approach
 - Can look at efficiency improvements going forward
 - Ongoing updates and modifications via the comment process and/or other proposals
 - Informational text and stylistic differences can be "expunged" and/or copyedited by the Editors, different subsections will move to different IEEE normalized sections.

PROPOSED MOTION

- Adopt laubach_3bn_04b_1113.docx as a starting point for the downstream baseline for P802.3bn downstream PHY.
 - NOTE: PLC (sections 1.2.12.x) removed: will be in the PLC baseline proposal

Moved: Avi Kliger

Second: Richard Prodan

Thank you