

SYMBOL SIZE CONSIDERATIONS FOR EPOC BASED OFDM PHY

Avi Kliger, Leo Montreuil, Tom Kolze Broadcom

OFDM Symbol Size Considerations

• Throughput

- CP overhead reduces with long symbols
- OFDMA framing with long symbols may create larger framing overheads

Latency

- Increases with large symbol sizes
- Burst Event Impact
 - Longer symbols require more FEC latency when a burst event impairs symbols
 - Longer symbol duration can provide more robustness in some burst events

• Phase noise performance

- Larger symbols more sensitive to phase noise
- Complexity
 - Buffer sizes in FFT implementation increase with symbol size
 - Low frequency phase requirements tougher with larger symbol size

CP size requirements

- Depends on the channel delay spread and the reflection size
 - CP duration does not need to exceed delay spread of the channel to be effective
- Our analysis on simulated and measured loops show that a CP size of 1.0 uSec or shorter is adequate to receive QAM1024 on vast majority of loops
 - Need to verify with established channel model when available
 - Verified on extreme worst case theoretical condition
- CP size can be configured to accommodate larger CP sizes when required (such as broken plant)

CP Overhead

 Assume OFDM sampling frequency of 204.8 MHz, table shows number of subcarriers and CP overheads as a function of symbol size

Subcarrier spacing	100	50	25	12.5
Symbol Size (uSec)	10	20	40	80
Number of subcarriers	2048	4096	8192	16384
CP size = 0.5 uSec	4.76%	2.44%	1.23%	0.62%
CP size = 1.0 uSec	9.09%	4.76%	2.44%	1.23%
CP size = 1.5 uSec	13.04%	6.98%	3.61%	1.84%
CP size = 2.0 uSec	16.67%	9.09%	4.76%	2.44%

With CP size of 1.0 – 1.5 uSec, uSec 20 uSec symbol size shows an overhead of less than 5% - 7%, respectively

Latency in the Downstream

 Modulation latency in the downstream with four times the symbol size

FFT Size	Symbol Size (uSEc)	Latency (uSec)
2048	10	40
4096	20	80
8192	40	160
16384	80	320

- Modulation latency addition is moderate for 10 -20uSec long symbols but becomes very large with the larger number of sub-carriers
- In particular 320 uSec latency becomes prohibitive for EPoC taking into account other latency involved

HW Complexity - FFT

- FFT complexity comprised of
 - DSP processing
 - Memory buffers
- DSP processing
 - Small difference between FFT sizes
- Buffer complexity
 - Increase linearly with number of sub-carriers and become substantial with large FFT size
- Adds significantly to the total PHY complexity

HW Complexity Memories

- FFT implementations require 3-4 FFT-size long buffers per FFT processor (depending on implementations)
- Additional FFT-size buffer is required for equalization
- Memory size for 4K
 4*(2*16bits)*4K = 32KB per block
- Memory size for 16K
 - 4*(2*16 bits)*16K = 128KB per block

Significant addition to PHY complexity

HW Complexity – Frequency Offset and Phase Noise

Carrier offset

- Curves depict ideal ICI calculations
- Shows larger sensitivity to large number of sub-carriers
- Make it harder to achieve target SNR with large symbol
- Phase noise and frequency drift
 - Smaller subcarrier spacing (larger symbols) imposes more difficult requirements for the XTAL phase noise

Conclusions

- With OFDM sampling frequency of 204.8 MHz:
- 4K sub-carriers provide a good trade-off between throughput loss due to CO overhead vs. complexity and latency
- 16K sub-carriers impose significant complexity and latency issues
- Configure CP to handle worst case networks if needed
 - Avoid incrementing complexity and latency to support extreme (rare) corner cases
- The analysis is based on in-house data and simulations and should be verified once a channel model with micro-reflection is available

Loop Impulse responses -Downstream

- Aggregated impulse responses over about 70 simulated channels
- Node+0, Node+3 and Node+5 topologies
- Examples: 200 MHz bands at 200-400 and 1000-1200 MHz
- Simulated loops to be used to assess required guard interval

Simulated CP size and ISI- Downstream

- The simulated loops were used to assess required CP size per loop and with different window sizes
 - − Require ISI of \leq -40 dBc
 - To support QAM1024
 - Tukey window is used, sizes are relative to 4096 FFT size
- CP sizes per loop are depicted, sorted by size
 - (X-axis is a loop index, y-axis the CP in uSec)
- Based on results we propose the following CP sizes:
 - ~0.5 uSec for most loops with short windows
 - ~1.0 uSec for most loops with larger window sizes
 - ~1.5 uSec for worst loops with larger window sizes
 - ~2.0 uSec (or higher?) for extreme cases
- CP size is configurable
 - CP size is set according to loop conditions and shaping requirements

