MULTIPLE DOWNSTREAM OFDM CHANNELS

Authors: Mark Laubach

OVERVIEW

- A concept approach for multiple OFDM channels was used as part of an example in <u>laubach_3bn_02_1113.pdf</u> (page 3-8).
- This presentation formalizes and proposes multiple downstream <u>channels</u> in support of meeting/approaching our 10 Gbps objective
 - The 802.3 1.4.233 lane definition does not really fit this approach, the 1.4.127 channel definition is more accurate.
- Good news: OFDM is already using subcarriers. The downstream Symbol Mapper multiplexes over a space of 4096 subcarriers (max 3800 usable).
 - 4096 is a nice binary number
 - Multiplexing over N * 4096 is a straightforward extension for both the Symbol Mapper as well as configuration management
 - Question is: what value is N?

HOW MANY CHANNELS?

- Proposal development initially examined 4 downstream channels
 - Can be amended to 5, 6, or 7 after discussion and Objective review
- First: viewed from raw data capacity (all overheads on page 7):
 - (N = 4) * 190 MHz * 12 bits/sec/Hz = 4 * 2.28 Gbps = 9.12 Gbps
 - (N = 5) = 11.4 Gbps
 - N = 4 is a more than a little short of 10 Gbps at MAC / PLS Objective
 - N = 5 gets closer, still more needed

Second: viewed from RF Spectrum availability:

- In the lifetime of EPoC, available RF Spectrum may move:
- From: 54 MHz to 1 GHz => 940 MHz
 - 4.8 channels
- To: 300 MHz to 1 GHz => 700 MHz (proposal focus)
 - 3.6 channels
- Or to: 300 MHz 1.212 GHz = 912 MHz (haven't seen > 1.0 GHz hardware)
 - 4.75 channels
- The above also assumes a Cable Operator will devote the majority of their downstream RF spectrum to EPoC – not very likely

- Refer to Figure: <u>laubach_3bn_04_0914.fm</u> (PDF)
- Symbol Mapper extends to (N = 4) * 4096 (4 * 3800) subcarriers for mapping
 - Mapping simply starts at Channel 0, then 1, 2, 3.
 - FCP (NCP) is not effected

Each channel is separately placed in RF spectrum

 Encompassed spectrum may be immediately adjacent, but no overlap; i.e. no exclusion or guard band needed between a subcarrier of one channel with the adjacent subcarrier from another channel

Channels 1, 2, 3 are optionally enabled, 0 is always configured

- PHY Link is associated / processed as part of Channel 0
 - One PHY Link for the downstream (reduced complexity over multiple)

Each OFDM Channel

- Same extended OFDM symbol time and windowing configuration
- Same symbol rate clock, inter-channel transmit skew tolerance ≤ 156.25 ns
- Same frame timing synchronization with PHY Discovery
- Separate interleaver, pilot insertion, IFFT, cyclic prefix and windowing

Draft text changes in <u>laubach_3bn_05_0914.pdf</u> (PDF)

Objectives (2/4)

- Provide a physical layer specification that is capable of:
 - A baseline data rate of 1 Gb/s at the MAC/PLS service interface when transmitting in 120 MHz, or less, of assigned spectrum under defined baseline plant conditions;
 - A data rate lower than the baseline data rate when transmitting in less than 120 MHz of assigned spectrum or under poorer than defined plant conditions;
 - A data rate higher than the 1Gb/s baseline data rate and up to 10 Gb/s when transmitting in assigned spectrum and in channel conditions that permit.
- PHY to support symmetric and asymmetric data rate operation.

See laubach_3bn_15_0914.xlsx

Channels	DS RF MHz	DS FEC Rate	64B/66B/65B Rate	CLT_DS_DataRate	XGMII Rate (approx)
1	102.00	0 882716040	0 09/615395	2 175 210 512 20	1 800 561 156 28
Static values	192.00	0.002710049	0.904010000	2,173,219,312.20	1,090,001,100.20
0.624.05	100.00			4 949 007 560 09	4 474 670 955 47
0.62105	120.00			1,348,097,560.98	1,171,679,855.47
1	192.00			2,175,219,512.20	1,890,561,156.28
4	762.00			8,714,926,829.27	7,574,454,923.22
4.64	883.60			10,109,853,658.54	8,786,835,772.36
5	952.00			10,894,829,268.29	9,469,086,178.86
5.3	1,009.00			11,548,682,926.83	10,037,373,803.07
6	1,142.00			13,074,731,707.32	11,363,717,434.51

Note: Clause 51.2 PMA_UNITDATA.request rate is (16 bits * 644531250 Hz) = 10,312,500,000.00									
		RS (255,223) Rate	64B/66B Rate	PMA rate	XGMII Rate (approx)				
		0.874509804	0.96969697	10,312,500,000.00	8,745,098,039.22				

Adopt N = 5 channels Modify objective, change "10 Gb/s" to "10G-EPON equivalent rate"

PROPOSED MOTION

BROADCOM.

Move to:

Adopt into the draft the figure 100-2 update based on laubach_3bn_04_0914.pdf Page 1 and text updates as per laubach_3bn_05_9414.pdf. Editors will update to support 5 downstream OFDM channels.

PROPOSED MOTION

Move to:

Amend P802.3bn Task Force objective as follows:

 A data rate higher than the 1Gb/s baseline data rate and up to 10 Gb/s <u>10G-EPON equivalent rate</u> when transmitting in assigned spectrum and in channel conditions that permit.

Direct the P802.3bn Chair to bring forward at next IEEE 802 plenary meeting for Working Group approval.

Thank you