EPoC PMA SERVICE INTERFACE PROPOSAL, PHY DATA RATES

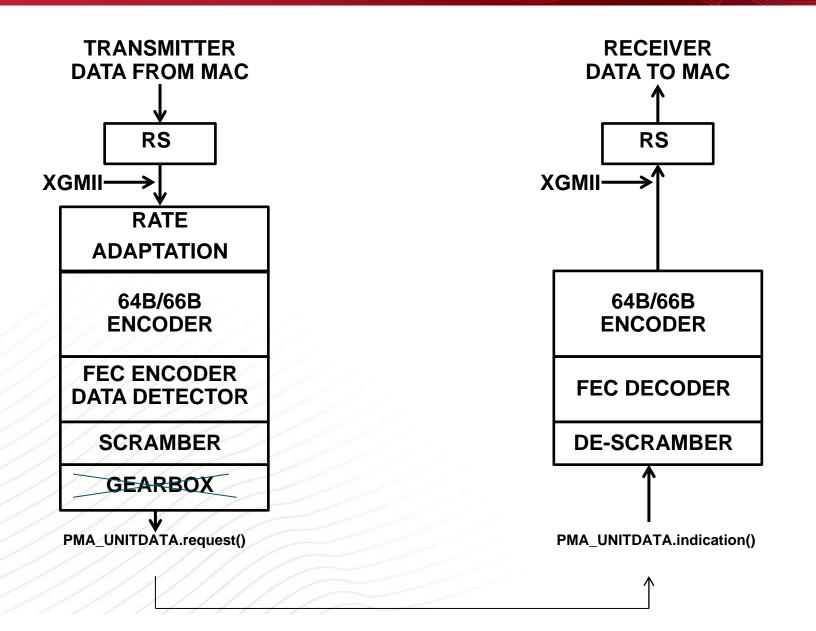
Authors: Mark Laubach

OVERVIEW

- 802.3 layer architecture separates the PCS and PMA sublayers using the PMA Service Interface:
 - PMA_UNITDATA.request() for conveying information and status from the PMA_Client (PCS) to the PMA.
 - PMA_UNITDATA.indication for conveying information and status from the PMA to the PMA Client.
- These are abstract layer interface and do not imply any particular implementation!!!!
 - This interface will not be exposed as an external interface
- These interfaces facilitate layer state diagrams and dependencies => for the standard

- Our PHY data rate (both downstream and upstream) are based on cable operator's provisioning => principally spectrum (subcarrier) assignment and bit-loading.
 - OFDM itself places other overheads that are algorithmically determined.
 - Variable, we are not a clock rate * word size based interface
- Nothing is constant such as with other media; e.g. TP, fiber, etc.
 - No octet or word granularity
- On transmit, we are using 65-bit data groups going into an LDPC process that adds CRC40 and FEC Parity that then is processed by a bit scrambler
 - Also, the symbol mapper takes a bit stream as an input
- PMA service interface proposal in this presentation is bit granular
- Also, provisioning the PHY for octet, word, or other granularity is either NP-complete or severely reduces flexibility for the cable operator.
 - Let them have maximum provisioning flexibility, let EPoC adapt around that

- Draft text details in <u>laubach_3bn_09_0914.pdf</u>.
- Essentially, PMA_UNITDATA.request and PMA_UNITDATA.indication conveys data a bit at a time with two boolean flags: burstStart and burstEnd
 - Flags set to TRUE at the appropriate bit, FALSE otherwise
- Downstream transmission and reception is continuous stream of FEC_DS_CodeWordSize sized codewords. CLT FCP (NCP) function uses burstStart, symbol clock, and frame start to update FCP value in PHY Link.
 - Note: CLT FCP (NCP) function needs to move to PMA to avoid layer violation
- Upstream transmission and reception is a variable length burst containing one or more codewords. CNU symbol mapper uses burstStart and burstEnd for marker placement. CLT PCS receive uses burstStart and burstEnd to determine burst length.
- Nominal bit rate is CLT_DS_DataRate and CLT_US_DataRate
 - Calculation overview follows later..


BRO

Observation:

- Refer to last sentence of Clause 49.2.7 Gearbox:
 - Depending on the path width, the gearbox functionality may not be necessary.
- Given the EPoC PHY layers are bit granular, the scrambler output is a bit stream, having a bit-wide PMA Service Interface likely removes the need for a Gearbox function.
 - There is no "16 bit of transmitted data unit" as is in other 802.3 standards
 - Our PCS burst (codeword) lengths are not multiples of 66-bits or 65-bits (if comment resolution is approved for this item).
- Proposal: remove Gearbox function

EPoC – BALANCED ARCHITECTURE

6

CLT_DS_DataRate

- Downstream PMA OFDM frame repeats every 128 symbols
 - DS_Frame_Length = 128 * Extended_OFDM_Symbol (seconds)
 - Extended_OFDM_Symbol = 20 usec + Cyclic Prefix Time (configurable)
- Downstream DS_Frame_Data_Load (bits)
 - Calculated after (re)provisioning and insertion of pilots (See 101.4.2.8)
 - ∑ over 128 symbols ∑ bits per subcarrier, for each active subcarrier over all enabled lanes, containing data
 - Skip PHY Link, excluded subcarriers, continuous pilots and scattered pilots
 - DS_Frame_Data_Load has the same value every frame
- CLT_DS_DataRate = (DS_Frame_Data_Load / DS_Frame_Length) (bits/sec)
 - This establishes nominal data rate for CLT PMA_UNITDATA.request() service interface
 - This does not include PCS overheads

Subcarriers	Pilot Overhead	PHY Link Overhead	Subcarrier for Data	Bits per subcarrier	Bits per Symbol I	DS_Frame_Data_Load
	(approximate)	subcarriers	(approximate)			bits / frame
3800	2.0%	8	3716	12	44592	5707776
Symbol Duration	Cycle Prefix	Extended Symbol	Frame Symbols	Frame_Length		
seconds	seconds	seconds		seconds		
0.00002	0.0000005	0.0000205	128	0.002624		
CLT_DS_DataRate = (DS_Frame_Data_	Load / Frame_Length) =	2,175,219,512.20	(bits / second)		

Observations on Example:

- 1. Example includes no excluded subcarriers
- 2. Pilot overhead and Frame_Data_Load is approximate. Must be based on actual pilot placement over the entire frame.
- 3. Example shows same bits per subcarrier loading, will be based on cable operator provisioning.
- 4. Vendor's calculation method will be implementation dependent, answer should be the same when calculated on the CNU

CLT_US_DataRate

- Upstream PMA OFDMA frame repeats every 256 + Probe symbols
 - US_Frame_Length = (256 + P) * Extended_OFDM_Symbol (seconds)
 - Extended_OFDM_Symbol = 20 usec + Cyclic Prefix Time (configurable)
 - P = Probe symbols are either 5 or 6
- Upstream Frame_Data_Load (bits)
 - Calculated after (re)provisioning and insertion of pilots (See 101.x.x.x)
 - \sum over 256 symbols \sum bits per each data RE and complementary (LD) pilot RE
 - Skip PHY Link, excluded subcarriers, continuous pilots
 - Skip probe region
 - US_Frame_Data_Load has the same value every frame
- CLT_US_DataRate = (US_Frame_Data_Load / US_Frame_Length) (bits/sec)
 - This establishes nominal data rate for CNU PMA_UNITDATA.request() service interface => negotiated upstream PHY data rate
 - This does not include PCS or burst marker overheads, CLT will include overheads in grant allocation calculations based on CLT_US_DataRate.

<u>Upstream</u>						
Subcarriers	Pilot Overhead	PHY Link Overhead	Subcarrier for Data	Bits per subcarrier	Bits per Symbol	US_Frame_Data_Load
(20 MHz)	(approximate)	subcarriers	(approximate)			bits / frame
400	4.4%	8	392	10	3747	959232
Symbol Duration	Cycle Prefix	Extended Symbol	Frame Symbols	Probe Symbols	Frame_Length	Frame_Length
seconds	seconds	seconds			seconds	TQs (16ns)
0.00002	0.0000005	0.0000205	256	5	0.0053505	334406.3
CLT_US_DataRate = (US_Frame_Data_Load / Frame_Length) =				179,278,945.89	(bits / second)	

Observations on Example:

- 1. Example includes no excluded subcarriers
- 2. Pilot overhead and US_Frame_Data_Load is approximate. Must be based on actual pilot placement over the entire frame.
- 3. Example shows same bits per subcarrier loading, will be based on cable operator provisioning, band edges, etc. and impact of low density pilots (complementary pilots)
- 4. Vendor's calculation method will be implementation dependent. However, CNU calculation must produce the same result as CLT calculation

PROPOSED MOTION

Move to:

Adopt the PMA Service Interface text in laubach_3bn_09_0914.pdf into the next draft.

Thank you

Approximate overheads as supplied by Avi Kliger:

num of symbols	pilot spacing	Overhead	
8	8	4.4%	
8	4	7.5%	
8	2	13.8%	
8	1	26.3%	
16	8	2.2%	
16	4	3.8%	
16	2	6.9%	
16	1	13.1%	