OAM Data Transfer During LPI

Atlanta, GA, USA January 14, 2015

Jim Graba and Mike Tu igraba@broadcom.com tum@broadcom.com

Contributors

- Steven Chen
- Ahmad Chini
- Peiqing Wang
- Mehmet Tazebay

OAM During LPI

- 1000BASE-T1 Task force has agreed to send OAM data during Normal data mode
- During a dearth of user data the MAC may instruct the PHY to go to LPI mode
 - While in LPI mode there is no FEC frame and therefore no OAM data
 - Can be in LPI mode for a long time
- May need to send OAM data during LPI mode
 - OAM needs are orthogonal to user data needs
- Propose sending OAM data during LPI mode
- Transfer of data should be transparent to the upper layers

Key Components

- Optional employment of the existing systematic block forward error correcting code (FEC).
- Align the LPI REFRESH signal with the FEC frame so that it consists of 3 sections:
 - Known reference sequence
 - Part of the FEC systematic symbols
 - The entire FEC parity symbols
- Apply punctured FEC encoding and decoding on the OAM data symbols and the parity symbols.

FEC Frame #n-1		FEC Frame #n				FEC Frame #n+1
DATA symbols	Parity symbols	DATA symbols		Parity symbols	DATA symbols	
REFRESH: Conventional		Known sequence for ref. training only				
REFRESH: Contains OAM I		Ref.	OAM	Parity		
			sequence	Data	symbols	

Advantages

- Enable robust OAM channel during LPI mode
 - REFRESH signals always starts with known reference sequence for maintaining link integrity
 - Rest of REFRESH signal aligned to FEC data and parity symbols, which enabled FEC error protection
- Reduced latency and power consumption when transferring OAM data → no need to exit LPI mode
- Mechanism for passing user data at a reduced rate while in LPI mode
 - For example: 0.36 us (OAM + Parity) + 0. 72 us (User data) + 0.36 us (Reference data) => 9.259 Mbps
 - Future proofing for highly asymmetrical data transfer requirements

Comparing LPI REFRESH Signals

REFRESH: Conventional

REFRESH: OAM

Conclusion

- Can provide OAM during LPI mode transparent to layers above the physical layer
- We propose this be included in the standard