RTPGE Channel Performance Formulation Proposal

CommScope

March 2013

Victoria Interim Meeting

Richard Mei

Trent Hayes

Wayne Larsen

Todd Herman

Supporters:

Agenda

- Insertion Loss Calculations with Variables
 - -Temperature
 - Connector Count
 - Frequency
 - –Conduction size (AWG & Area)
 - –Length
- Return Loss
- PSANEXT
- PSAACRF
 - Connector Count
 - Frequency
 - –Length

equations for insertion loss of 1-pair ethernet channel For 20 degrees C and AWG 23

$$IL := \left(1.2 \cdot \frac{L}{100}\right) \cdot \left(1.82 \cdot \sqrt{\mathbf{f}} + .0091 \cdot \mathbf{f} + \frac{.25}{\sqrt{\mathbf{f}}}\right) + B \cdot .02 \cdot \sqrt{\mathbf{f}}$$

where

B := number of connectors

 $f := frequency_MHz$

L.. length_m

For any temperature above 20 degrees C and for any conductor size

IL :=
$$[1 + .004 \cdot (T - 20)] \cdot \left(1.2 \cdot \frac{L}{100}\right) \cdot \left[\frac{1.82}{\frac{(23-n)}{39}} \cdot \sqrt{f} + .0091 \cdot f + \frac{.25}{\sqrt{f}}\right] + B \cdot .02 \cdot \sqrt{f}$$

where

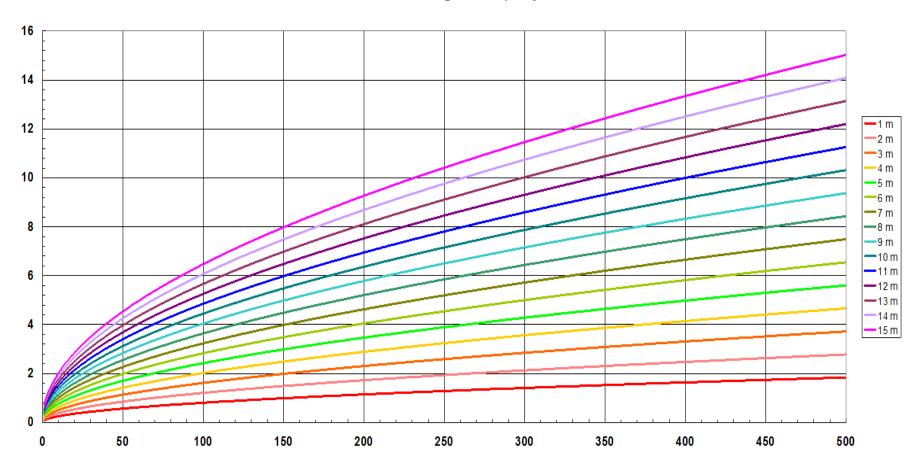
T := Temperature in degrees C

n := conductor size in AWG

For conductor size in cross-sectional area, mm²

$$IL := \left[1 + .004 \cdot (\mathbf{T} - 20)\right] \cdot \left(1.2 \cdot \frac{L}{100}\right) \cdot \left[1.82 \cdot \left(\frac{.508}{\sqrt{A}}\right) \cdot \sqrt{f} + .0091 \cdot f + \frac{.25}{\sqrt{f}}\right] + B \cdot .02 \cdot \sqrt{f}$$

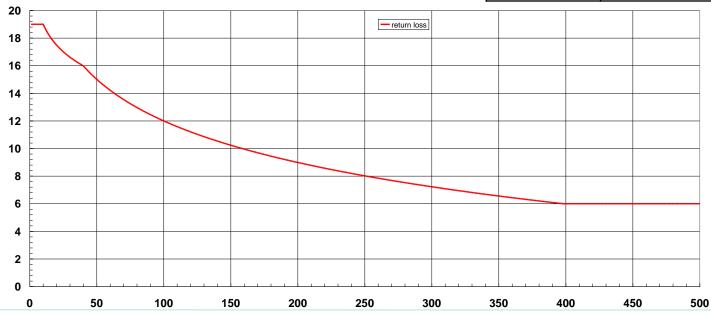
where



Example calculation for AWG 26 at 125 degrees C

Α	WG	26						
temperatur numbe	. •	es C)	125					
connect	ors		2					
	Length							
	1 m	2 m	3 m	4 m	5 m	6 m	7 m	8 m
frequency MHz								
4	0.00	0.40	0.47	0.04	0.05	0.00	0 0 4	0.00

IL versus length and frequency


Return Loss Model

Return Loss

Frequency MHz	Requirement (dB)
1-10	19
10-40	24-5*log(f)
40-398.1	32-10*log(f)
398.1-500	6

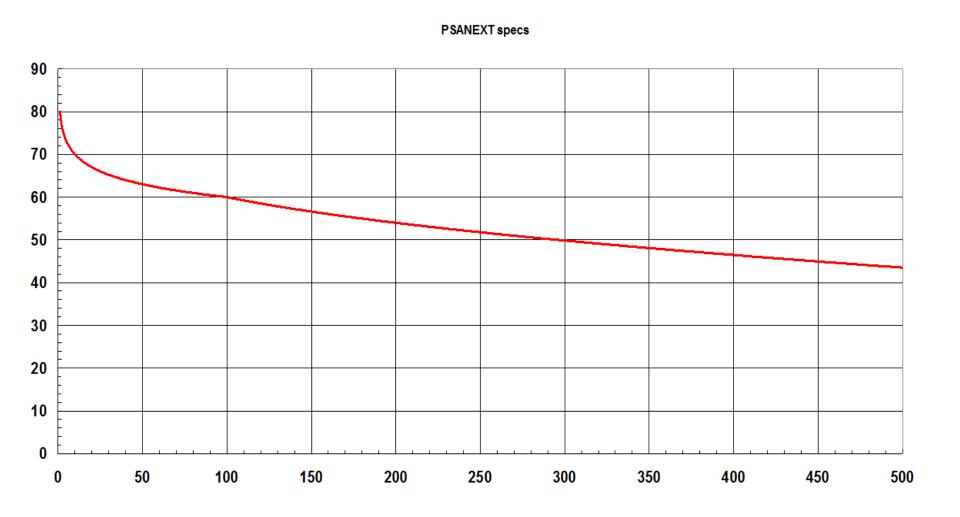
return loss	
frequency MHz	return loss requirement
1	19.00
50	15.01
100	12.00
150	10.24
200	8.99
250	8.02
300	7.23
350	6.56
400	6.00
450	6.00
500	6.00

Power Sum Alien NEXT Model

PSANEXT

from 1 to 100 MHz

from 100 to 500 MHz


PSANEXT loss	
frequency MHz	PSNEXT requirement
1	80.00
50	63.01
100	60.00
150	56.61
200	53.98
250	51.78
300	49.84
350	48.09
400	46.47
450	44.95
500	43.52

$$PSANEXT := 60 - 10 \cdot log \left(\frac{\mathbf{f}}{100}\right)$$

$$PSANEXT := 60 - 15 \cdot log \left(\frac{\mathbf{f}}{100}\right) + 6 \cdot \frac{(\mathbf{f} - 100)}{400}$$

Power Sum Alien NEXT Model

Power Sum Alien Attenuation to Crosstalk Ratio, Far End Model

PSAACRF

$$PSAACRF := -20 \cdot log \left[10^{\left[\frac{\left(-10 \cdot log \left(\frac{L}{100} \right) + 38.2 - 20 \cdot log \left(\frac{f}{100} \right) \right)}{-20}} \right] + B \cdot 10^{\left[\frac{\left(67 - 20 \cdot log \left(\frac{f}{100} \right) \right)}{-20}} \right]}$$

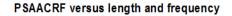
where

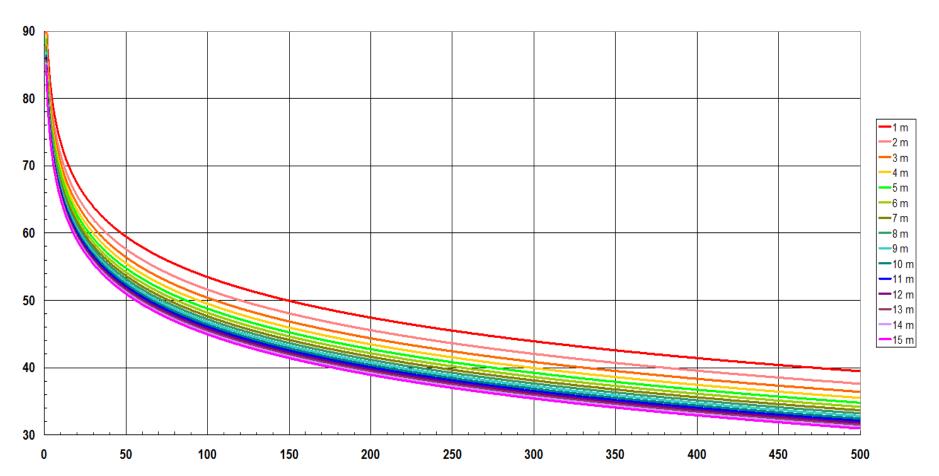
L := length_in_meters

f := frequency_in_MHz

B := number_of_connectors

Power Sum Alien Attenuation to Crosstalk Ratio, Far End Model


Example calculation for a 2-connector channel:


.t.		
.t.		
.t.		

	Length														
	1 m	2 m	3 m	4 m	5 m	6 m	7 m	8 m	9 m	10m	11m	12m	13m	14m	15m
Frequency MHz															
1	93.5	91.6	90.4	89.5	88.88	88.2	87.6	87.2	86.8	86.4	86.1	85.8	85.5	85.2	84.9
50	59.5	57.6	56.4	55.5	54.8	54.2	53.7	53.2	52.8	52.4	52.1	51.8	51.5	51.2	51.0
100	53.5	51.6	50.4	49.5	48.8	48.2	47.6	47.2	46.8	46.4	46.1	45.8	45.5	45.2	44.9
150	49.9	48.1	46.9	46.0	45.2	44.6	44.1	43.7	43.3	42.9	42.5	42.2	41.9	41.7	41.4
200	47.4	45.6	44.4	43.5	42.7	42.1	41.6	41.2	40.8	40.4	40.0	39.7	39.4	39.2	38.9
250	45.5	43.6	42.4	41.5	40.8	40.2	39.7	39.2	38.8	38.4	38.1	37.8	37.5	37.2	37.0
300	43.9	42.0	40.8	39.9	39.2	38.6	38.1	37.6	37.2	36.9	36.5	36.2	35.9	35.7	35.4
350	42.6	40.7	39.5	38.6	37.9	37.3	36.8	36.3	35.9	35.5	35.2	34.9	34.6	34.3	34.1
400	41.4	39.5	38.3	37.4	36.7	36.1	35.6	35.1	34.7	34.4	34.0	33.7	33.4	33.2	32.9
450	40.4	38.5	37.3	36.4	35.7	35.1	34.6	34.1	33.7	33.3	33.0	32.7	32.4	32.1	31.9
500	39.5	37.6	36.4	35.5	34.8	34.2	33.7	33.2	32.8	32.4	32.1	31.8	31.5	31.2	31.0

Power Sum Alien Attenuation to Crosstalk Ratio, Far End Model

Summary / Recommendations

- This was a follow-up to the recommendation to adopt ISO Class EA specification made in the March Plenary.
- Provided equations provision for all the variable parameters.
- Derivation from combined test data and extrapolation from the standard
- These equations should be reviewed by the Task Force to be used as the foundation for the RTPGE standard.
- LCL, LCTL, TCL, TCTL should be specified based on EMC modeling study

Thank You

