Training & EEE Baseline

IEEE 802.3bp - Plenary Meeting - November 2014

William Lo, Marvell

Parameters for this Baseline

▶ Optimized to work with RS(450, 406, 29), PAM3, 750MBaud/s

Symbol	Definition	Values
RS3	# PAM3 symbols per RS frame	2700
RST	Duration of RS frame (ns)	3600
PRS3	# PAM3 symbols per partial RS frame	180
PRST	Duration of partial RS frame (ns)	240
PF	# partial frames per RS frame	15
QRF	# RS frame per quiet refresh cycle	24
QRT	Duration of quiet refresh cycle (ns)	86400
2 x AF	# partial RS frames separating alert	30
2 x AlertGranularityT	Alert Granularity (ns)	7200
Refresh_LPI	# partial RS frames for refresh	6
Refrest_T	Duration for refresh (ns)	1440
QR Ratio	Quite/Refresh Ratio	60
Enter_LPI_RS	# RS frames with all LPI to enter LPI	1
		Implementation
Alert_T	Sense window (ns)	Dependent
Exit_LPI_RS	# RS frames with all idles upon exit LPI	1

1000BASE-T1 Training

- XOR training sequence with scrambler sequence
- Issue 1 RS frame a lot longer than 1 LDPC frame
 - RS(450, 406, 2^9) = 3600 ns
- Want bit inversion and info field to occur more frequently given nosier environment
- Solution Introduce partial RS frame
 - Divide RS frame time into PF number of PRS₃ symbol groups
 - Info field occurs once per RS frame time. Indicated by XORed 0xBBA7 pattern
 - Info field first 96 bits of PRS₃ symbol group to avoid offset calculations.

Info Field

- ▶ 96 bits.
- Partial RS Frame Count (PFC) used to establish time synchronization for EEE
 - Free running on 1000BASE-T1 master
 - Slave must match partial frame count (PFC) to within +0/-1 partial RS frame measured at the receiver input
- LSB transmitted first
- Message format defined in another baseline

0xBB 0xA70x00LSB Partial frame count mod (QF x PF) **MSB** Message Message Message Message CRC16 CRC16

1000BASE-T1

LSB

MSB

Example of slave partial RS frame count matching

- PF x PRS₃ symbols per training sequence
- Master free runs and increments PFC by PF every training sequence
 - Rolls over but in theory should not
- Slave locks to within +0/-1
 - Slave accepts master PFC only if CRC16 is good.
 - Robust to noise since not every info field needs to be processed to recover master PFC

EEE - Entering LPI

If LPI seen on GMII fill remaining bytes in RS frame with LPI symbol. Then send Enter_LPI_RS number of RS frame with nothing but LPI symbols.

EEE - Quiet/Refresh and Sense

- Master and Slave Refresh Staggered as shown
- Use wake time of 16.5us
- Allow wake frame to be sent only during certain windows
 - Allows receiver to power down outside window
 - Stagger windows between master and slave so wake frame never overlap
 - Will increase worst case wake time waiting for window
 - Align refresh with sense window
 - Space sense windows 2 x AF x PRS₃ symbols apart and stagger master and slave windows by AF x PRS₃

Quiet / Refresh / Sense – With actual numbers

- Every 2700 symbol can have 1 of 5 activities
 - Data Regular RS frame
 - Refresh a sense window followed by refresh pattern
 - Sense a sense window only
 - Quiet pure quiet period.
 - Wake wake pattern simply a data frame with all idles

^{*}sense window shown as 540 symbols as an example. Actual duration is left to the implementer IEEE 802.3bp RTPGE – November 2014 Plenary Meeting

Quiet Refresh Cycle – With actual numbers

- Every quiet/refresh cycle consists of 24 RS Frame times
- Same as 360 80/81 encoder transfers
- Same as 360 Partial RS Frame times
- Quiet and Sense are offset between master and slave
- Wake can only be sent during PHYs Quiet time
 - Coincides with link partners sense window

EEE – Exit LPI Procedure

- Send Exit_LPI_RS RS frame with all bytes idles
 - This is the wake frame. Alert pattern not needed.
- Lets the main data path warm up
 - Worst case wakeup time $2 \times RS_T + latency = 2 \times 3.6us + approx 5us = 12.2us$
- Optional parallel path for early detection of sufficient number of idles bytes in pattern match to exit LPI
 - Data is not corrected by RS

Refresh Pattern

Use data scrambler sequence with all zero data

