Analysis of PAM modulation to meet EMC/EMI requirements

Presenter: Anand Dabak, TI
Nirmal Warke, Anand Dabak, Oren Shalita, Vijay Ceekala, Sumatra Seth, Srinath Hosur - TI
York, UK
September 3-5, 2013

Abstract

 In this presentation we look at the tradeoff analysis of the different PAM modulations to meet the EMC and EMI requirements defined in the channel model ad-hoc group to achieve the throughput rate in RTPGE

Tx PSD for PAM-5

 Verification of PSD estimation methodology by replicating results in "tazebay_3bp_01a_0113"

Conditions

- Modulation: PAM-5 @ 500MHz symbol rate (1.16Gbps with overhead)
- Tx swing: 1Vppd
- $\text{Tx PRF: } \frac{3}{4} + \frac{1}{4} \text{ z}^{-1}$
- Tx Analog LPF @ 300MHz (2nd order butterworth)

Verification of PSD script

EMC Compliance & EMI Tolerance

- PAM-5 with filtering designed to just meet the EMC PSD limit (~1.4Vppd) does not meet the EMI requirements "bliss_3bp_0313"
 - 1.4Vppd estimated from "tazebay_3bp_01_0113" that shows the psd for 1Vppd
- Further this does not allow for increased EMC due to higher "peak" voltage on the line from full duplex operation
 - In reality, Tx swing would need to be reduced further to meet EMC requirements
- Lower order modulations PAM-3, NRZ should be considered seriously as
 - they operate at lower tx swing and could result in lower EMC
 - they have higher tolerance to sin wave interference as pointed out in "bliss_3bp_0313"

Tx PSD Comparison for NRZ, PAM-3 and PAM-5

PAM-5

- 500MHz symbol rate
- Tx swing: 1.4Vppd
- Tx PRF: 0.75 + 0.25*z^-1
- Tx Analog LPF @ 300MHz

PAM-3

- 732MHz symbol rate (500*log2(5)/log2(3))
- Tx swing*: 0.96Vppd
- Tx PRF: 0.68+ 0.32*z^-1 (2.74dB more attn)
- Tx Analog LPF @ 439MHz (3/5 * baudRate)

NRZ

- 1161MHz symbol rate (500*log2(5)/log2(2))
- Tx swing*: 0.77Vppd
- Tx PRF: 0.61+ 0.39*z^-1 (6.83dB more attn)
- Tx Analog LPF @ 697MHz (3/5 * baudRate)

^{*}Tx swing scaled to have same EMI tolerance ie, same dmin at Rx

Tx PSD Comparison

⇒ Lower order modulations NRZ, PAM3 help reduce the energy in the low frequency region

Summary

 Lower order modulations NRZ, PAM3 reduce energy in the low frequency region

- To meet PSD mask at high freq
 - additional Tx filtering/shaping can be used
 - symbol rate can be reduced at the cost of FEC overhead