Return Loss Modeling

Wayne Larsen

Outline of modeling procedure

- Cable is modeled to be realistic, with random impedance and coupling variations along length, in 1 cm discrete segments.
- Connectors are modeled as worst case magnitude and physically sensible, deterministic phase.
- Channel model is made by cascading sparameters in sequence, cable-connector-cableconnector-cable.
- Lengths of cables can be varied in certain discrete amounts.

return loss modeling results Existing TIA component limits (10 dB connector plateau)

Return loss channel outcome with existing TIA component limits

- All five configurations passed except for 0.1-3-0.1
- 0.1-3-0.1 fails on some pairs, the worst pair is shown.
- 0.1-24-5 configuration was not requested, but was shown, since it is possible short patch cords may be used in long channels. It passes, but with little margin.
- Patch cord length of 0.1 instead of 0.15 was used because of a present limitation in the program and the schedule limit. This can be done again with the 0.15 length if needed.
- ILD is studied below:

Insertion loss modeling results Existing TIA component limits (10 dB connector plateau)

Insertion loss deviation modeling results Existing TIA component limits (10 dB connector plateau)

IEEE 40GBASE-T ad hoc June 5, 2013

Insertion loss results

- There is a significant ILD, relatively independent of length. This is similar to ILD observed for 10GBASE-T, and hopefully will be acceptable to the PHY.
- Below the ISO-2 limit is considered. The longer channels are met with the TIA limits for the components.

return loss modeling results: Longer channels, ISO-2 based limit,

IEEE 40GBASE-T ad hoc June 5, 2013

Return loss modeling results v ISO-2 based limit

- These three longer channels all pass based on the TIA component requirements and the ISO class II limits.
- Note that the limit was enhanced from the ISO-2 limit in the middle frequencies and this has no bearing on passing or failing.
- Now consider a shorter, 1-3-1 channel:

return loss modeling results:

Return loss modeling results continued

- The 1-3-1 channel was not mentioned in IEEE, but was the basis for the TIA modeling.
- To make the channel pass the ISO-2 limits, and improvement in the connector return loss requirement would be needed, as shown.
- Now consider the other short channels:

return loss modeling results: shorter channels, ISO-2 based limit,

IEEE 40GBASE-T ad hoc June 5, 2013

What to do about short channels?

- Consider a limit which is relaxed when the channel is short
 - Considerably less IL than long channels will assure PHY margin
 - A length dependant term would provide a gradual change
 - Consider subtracting 0.312(6.081-IL(500 MHz)) whenever IL at 500 MHz is less than 6.081
 - This corresponds to a length of 12 m.

return loss modeling results:

0.5-3-0.5 channel ISO-2 based limit relaxed for shortness,

IEEE 40GBASE-T ad hoc June 5, 2013

return loss modeling results:

0.1-3-0.1 channel ISO-2 based limit relaxed for shortness,

