Supplemental Measurements of System Background Noise in 10GBASE-T Systems

IEEE P802.3bq 40GBASE-T Task Force

Pete Cibula (Intel)
Dave Chalupsky (Intel)

April 8th, 2014

Supplemental Noise Measurements Purpose & Goals

- Purpose Characterize background noise in representative systems that are candidates for 40GBASE-T PHYs
 - Support the P802.3bq PHY Baseline Proposal ad hoc's request for "...measurement results of background noise in systems, including broadband, stationary, and nonstationary narrowband sources."
 - Why? System background noise power may be a significant factor in optimizing 40GBASE-T PHY designs
- Goals This is a follow-on assessment intended to
 - Better establish absolute system background noise levels
 - Provide examples of background noise observed on other 10GBASE-T systems (server LAN-On-Motherboard, or LOM; switch)

Methodology Overview

- Establish the measurement noise floor
 - PSD of noise from 500kHz to 3GHz at reference plane
 - Common-mode termination on short S/FTP RJ45 patch cord
 - Use instrument-specific capability* to extend the measurement noise floor
- Characterize system background noise
 - PHY active but with all transmitters disabled
 - Measure system noise at MDI
 - RJ45 connection
 - Subtract measurement noise floor to highlight system-specific background noise

^{*}Specifically, Noise Floor Extension

Noise Floor Extension (NFE)

- Measurements made within ~20dB of an analyzer's displayed noise level will be affected by noise
 - Analyzer noise adds to the apparent power of the measured signal
 - The result that is somewhat higher than the true/actual figure
- Typical solutions
 - Reduce analyzer RBW
 - Add a low-noise amplifier/pre-amp
 - Reduce/eliminate instrument attenuation
 - Enable averaging (reduce VBW, average traces, use an average detector) to reduce variability
- Alternative
 - Model noise power and subtract from measurement results to reduce the effective noise level = Noise Floor Extension (NFE)

NFE Effectiveness

- Average DANL is usually reduced by 10 to12 dB below 3GHz
 - Apparent noise level is reduced, but only analyzer noise power is subtracted
 - Apparent displayed signal power will be reduced only if the analyzer noise power is a significant part of their power
- Both discrete signals and the signal noise floor are more accurately measured with NFE enabled.

Spectrum Analyzer DANL Comparison

- Displayed Average Noise Level, or DANL, is noise generated within the spectrum analyzer (SA) itself
 - Plots show the SA DANL (top) and noise PSD (bottom) with settings used for background noise measurements
 - The top pair of traces (purple & crimson "x") in each plot is the DANL measured at the SA input and balun (50 ohm terminations) without NFE
 - The bottom pair of traces in each plot is the same measurement with NFE enabled

Measurement Noise Floor With & Without NFE

- Noise floor as measured at the MDI interface (RJ45 plug) is consistent across all 4 pairs and ~10dBm/Hz better than previous results
 - Average noise is improved from approximately -153.7 dBm/Hz to -163.7 dBm/Hz
 - Noise power (PSD integrated from 500kHz – 3GHz) is improved from approximately -58.5 dBm to -68.4 dBm/Hz
- The 10dBm/Hz improvement is reflected in subsequent measurements

Pair (Pins)	Average noise (dBm/Hz)	Average noise (dBm/Hz) with NFE	Noise Power (dBm)	Noise Power (dBm) with NFE
A (1,2)	-153.67	-163.71	-58.52	-68.31
B (3,6)	-153.67	-163.76	-58.52	-68.40
C (4,5)	-153.67	-163.75	-58.52	-68.41
D (7,8)	-153.66	-163.72	-58.52	-68.37

DUT #1 MDI Noise With & Without NFE

- System background noise for DUT #1 as measured at the MDI interface (RJ45 jack) displays the following characteristics:
 - Broadband source(s) from 500kHz to ~1.2GHz
 - Narrowband source (800MHz, 1.6GHz)
 - Narrowband source (625MHz, 1.875GHz, 2.5GHz)
- Average noise (all pairs) is ~ 158.8 dBm/Hz
- Noise power (PSD integrated from 500kHz – 3GHz, all pairs) is ~ -61.3 dBm

Pair (Pins)	Average noise (dBm/Hz)	Average noise (dBm/Hz) with NFE	Noise Power (dBm)	Noise Power (dBm) with NFE
A (1,2)	-151.91	-158.46	-56.78	-61.05
B (3,6)	-152.24	-159.33	-57.10	-62.24
C (4,5)	-152.08	-158.75	-56.92	-60.90
D (7,8)	-151.92	-158.79	-56.80	-61.18

MDI Noise Measurements, DUT#1 Per-pair noise above noise floor (-NFE)

Some pairs appear to have unique sources (Pair A 600MHz; Pair D 1.6GHz - 2GHz)

MDI Noise Measurements, DUT#1 Per-pair noise above noise floor (+NFE)

Some pairs appear to have unique sources (Pair A 600MHz; Pair D 1.6GHz - 2GHz)

Other System Background Noise Measurements

- Similar system background noise measurements are included for other 10GBASE-T systems
 - A 2nd 10GBASE-T adapter ("DUT #2" in cibula_3bq_02a_0314.pdf)
 - A 10GBASE-T server design with the controller implemented as a LOM
 - A 10GBASE-T switch
 - One set of measurements includes an active adjacent port to compare crosstalk coupling and system background noise
- Measurement plots and per-port results are included in supplementary backup material
- Overall results are presented in the following slide

MDI Measurements With NFE (All)

Condition	PHY	4-Pair Average noise (dBm/Hz)	4-Pair Average Noise Power (dBm)
Measurement Noise Floor	n/a	-163.74	-68.37
NIC #1	Α	-158.83	-61.34
NIC #2	В	-162.72	-67.20
LOM P0	Α	-161.37	-65.48
LOM P0	Α	-161.99	-64.52
Switch P1	С	-163.65	-68.15
Switch P2	С	-163.68	-67.50
Switch P2 + xtalk	С	-163.74	-68.39

Results & Observations

- Average measured background noise for all systems (10GBASE-T network adapters, server LOM, and switch) is between -164
 dBm/Hz and -159 dBm/Hz
- Average measured noise power for all systems is between -68 dBm and -61 dBm/Hz
- For the systems evaluated in this investigation, most background noise power is observed below about 1.4GHz
 - Measured system noise in this range is worst-case about 24 dBm/Hz above the measurement noise floor
- A variety of system clock/RF sources are the primary contributors between 1.4GHz and 3GHz
- Specific background noise (assumed both broadband and stationary) varies across both MDI trace pairs and design implementations

Conclusions

- Improved measurements of several 10GBASE-T implementations indicate an average system background noise level of approximately -162 dBm/Hz
- While average system background noise levels are comparable...
 - Specific background noise levels vary with implementation
 - Background noise levels also vary across MDI pairs

Next Steps/Further Investigation

- Post-Beijing request from the PHY Baseline Proposal ad hoc
 - √ Provide MDI-based measurements in other systems.
 - 10GBASE-T server LAN-on-motherboard? Switches?
 - Included in this contribution!
 - Measure the observed peak-to-peak noise voltage levels, integrated from 10MHz (or thereabouts) to at least 1.6GHz
 - Provide more information related to PBO and uncoded bits

Thank You!

DUT #2 MDI Noise With & Without NFE

- System background noise for DUT #2 as measured at the MDI interface (RJ45 jack) displays the following characteristics:
 - Multiple source(s) from 500kHz to
 ~300MHz and between 400MHz and
 600MHz
 - Unrelated (?) narrowband source at 500MHz
 - Narrowband source (800MHz, 1.6GHz)
 - Narrowband source (625MHz, 1.875GHz, 2.5GHz
- Average noise (all pairs) is ~ 162.7 dBm/Hz
- Noise power (PSD integrated from 500kHz – 3GHz, all pairs) is ~ -67-2 dBm

Pair (Pins)	Average noise (dBm/Hz)	Average noise (dBm/Hz) with NFE	Noise Power (dBm)	Noise Power (dBm) with NFE
A (1,2)	-153.12	-161.91	-57.34	-65.85
B (3,6)	-153.57	-163.17	-58.45	-67.96
C (4,5)	-153.22	-162.91	-58.07	-67.41
D (7,8)	-153.44	-162.90	-58.33	-67.56

MDI Noise Measurements, DUT#2 Per-pair noise above noise floor (-NFE)

Unique sources (Pair A 839MHz; Pair D 1.5GHz – 1.7GHz); note more low frequency noise on A & C

MDI Noise Measurements, DUT#2 Per-pair noise above noise floor (+NFE)

Note more low frequency noise on A & C

MDI Measurements, Server LOM P0

Pair (Pins)	Average noise (dBm/Hz)	Noise Power (dBm)
A (1,2)	-161.09	-63.88
B (3,6)	-161.47	-65.13
C (4,5)	-161.44	-66.55
D (7,8)	-161.46	-66.34

- Broadband source(s) from 500kHz to ~1.2GHz
- Narrowband source (800MHz, 1.6GHz)
- Narrowband source (625MHz, 1.875GHz, 2.5GHz)
- Average noise (all pairs) is ~ -161.4 dBm/Hz
- Noise power (PSD integrated from 500kHz 3GHz, all pairs) is ~ -65.5 dBm

MDI Measurements, Server LOM P1

Pair (Pins)	Average noise (dBm/Hz)	Noise Power (dBm)
A (1,2)	-162.42	-66.19
B (3,6)	-161.79	-66.07
C (4,5)	-162.08	-64.13
D (7,8)	-161.67	-61.67

- Broadband source(s) from 500kHz to ~1.2GHz
- Narrowband source (800MHz, 1.6GHz)
- Narrowband source (625MHz, 1.875GHz, 2.5GHz)
- Average noise (all pairs) is ~ -162.0 dBm/Hz
- Noise power (PSD integrated from 500kHz 3GHz, all pairs) is ~ -64.5 dBm

MDI Noise Measurements, LOM P0 Per-pair noise above noise floor

MDI Noise Measurements, LOM P1 Per-pair noise above noise floor

MDI Measurements, Switch P1

Pair (Pins)	Average noise (dBm/Hz)	Noise Power (dBm)
A (1,2)	-163.50	-67.47
B (3,6)	-163.71	-68.39
C (4,5)	-163.76	-68.45
D (7,8)	-163.64	-68.29

- Broadband source(s) from 500kHz to ~1.2GHz
- Narrowband source (800MHz, 1.6GHz)
- Narrowband source (625MHz, 1.875GHz, 2.5GHz)
- Average noise (all pairs) is ~ -163.7 dBm/Hz
- Noise power (PSD integrated from 500kHz 3GHz, all pairs) is ~ -68.2 dBm

MDI Measurements, Switch P2

Pair (Pins)	Average noise (dBm/Hz)	Noise Power (dBm)
A (1,2)	-163.58	-65.71
B (3,6)	-163.73	-68.40
C (4,5)	-163.74	-67.64
D (7,8)	-163.67	-68.24

- Broadband source(s) from 500kHz to ~1.2GHz
- Narrowband source (800MHz, 1.6GHz)
- Narrowband source (625MHz, 1.875GHz, 2.5GHz)
- Average noise (all pairs) is ~ -163.7 dBm/Hz
- Noise power (PSD integrated from 500kHz 3GHz, all pairs) is ~ -67.5 dBm

MDI Measurements, Switch P2 xtalk

Pair (Pins)	Average noise (dBm/Hz)	Noise Power (dBm)
A (1,2)	-163.71	-68.33
B (3,6)	-163.76	-68.42
C (4,5)	-163.75	-68.42
D (7,8)	-163.72	-68.39

- Broadband source(s) from 500kHz to ~1.2GHz
- Narrowband source (800MHz, 1.6GHz)
- Narrowband source (625MHz, 1.875GHz, 2.5GHz)
- Average noise (all pairs) is ~ -163.7 dBm/Hz
- Noise power (PSD integrated from 500kHz 3GHz, all pairs) is ~ -68.4 dBm

MDI Noise Measurements, Switch P1 Per-pair noise above noise floor

MDI Noise Measurements, Switch P2 Per-pair noise above noise floor

MDI Noise Measurements, Switch P2 xtalk Per-pair noise above noise floor

Test Fixture Noise Above DANL (+NFE)

Noise floor measurement on Slide 6 with the spectrum analyzer DANL removed

- Pair D single-frequency source above 800MHz is unknown (May be an artifact?)
- Signals on all pairs between 2.4GHz-2.5GHz assumed to be 802.11 channels

Server LOM Noise Example "1GHz" Clock Source

Possible spread-spectrum source?

Analyzer RF Attenuation

 Spectrum analyzer may default to a specific default attenuation setting based on the reference level

measurements at default (6dB) attenuation may mask low-level noise

 OdB attenuation used to obtain maximum sensitivity

Clarification on Fixture Noise Above Spectrum Analyzer Noise Floor

Test fixture/interconnect noise floor measured at the patch cable RJ45 plug

Spectrum analyzer noise floor measured at the instrument input

$$C = A - B$$

Subtracting the spectrum analyzer noise highlights interconnect/fixture noise above the instrument noise floor

Clarification on System Background Noise Above CM Measurement Noise Floor

$$C = A - B$$

Subtracting fixture noise highlights system background noise above the test fixture noise floor