Advantages of the use of the periodic training sequence

German Feyh, Broadcom

Waikoloa, Hawaii July 2015

Improvement

• 10G PTS

- All during 2s startup, the transmitter is periodically resetting its transmit LFSR at 16384 boundaries.
- Transmit signal not spectrally rich enough to adapt all equalization coefficients.

• Improvement:

- PTS is used only for synchronization of the two link partners.
 - Fast and
 - Robust.
- Switch to CTS in PBO Exchange
- If scrambler reinitialization is used for normal training, it shall be disabled and the scramblers shall begin free-running when the PHY Control state diagram is in the state PMA_PBO_Exch and the receiver detects a valid requested transmitter PBO setting (Octet 7 Valid<7> equal to 1).
- Training of the DFE for THP already sees the continuous training signal.

Periodic training sequence advantage

Faster

- Correlation receiver vs. blind equalization
- 5x faster for Slave
- 10x faster for Master

Robust

- Suck outs
 - Insertion loss: cable vendors satisfy the letter of the law
 - 5G over CAT5E
 - Suck outs possible above 100MHz.
- Blind equalization needs to invert the channel
 - Creating something out of nothing leaves us with a lot of noise.
 - Blind equalization either fails or takes a long time to converge.

Easy

- Link partner that does not want to implement the PTS
 - Reset one bit, when a valid requested transmitter PBO is received.

Do not be surprised by cables having suck-outs! Create an in-band notch using a stub now.

Please try this at home!

Thank you

