Response to the Technical Feasibility CSD

Tom Souvignier German Feyh

Berlin, Germany March 11th, 2015

Supporters

Rick Rabinovich Alcatel Lucent

Faro Chang
Alpha Networks

Scott Kipp Brocade

Melody Chiang Accton

Yong Kim Broadcom

Will Bliss
Broadcom

Bob Wagner Panduit

Brad Booth Chair IEEE Std 802.3an-2006

Jon Lewis Dell

Maurice Lee Delta Electronics

Jack Weng Delta Electronics

Andreas Dreher Hirschmann / Belden

Stephan Kehrer Hirschmann / Belden

Likseng Lim Delta Networks

Zhuangyan Zhuang Huawei

Roy Shiyong Fu Huawei

Alon Regev Ixia

Jeremy Chiu Kennixa

Wei George Kennixa

Keith Abercromby Keysight

Alex Bailes Keysight

Hyung-Jin Park Korea Telecom

Farid Hamidy Pulse

Mingwei Li Ruijie Networks

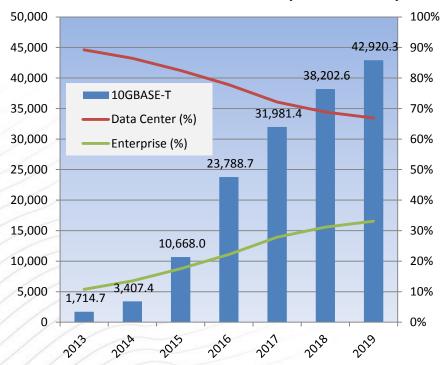
Yongxin YeRuijie Networks

Weisen Cheng ZTE

Dong Woo Kim Dasan Networks

Subong Lee Ubiquoss

Introduction

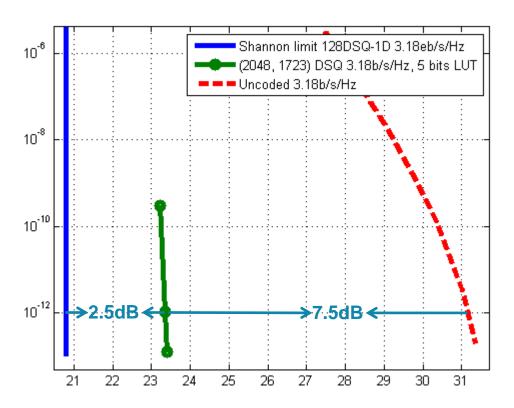

- This presentation is given in support of the Technical Feasibility CSD.
- We examine the feasibility of scaling the 10GBASE-T Physical layer to operate at 2.5/5G.

10GBASE-T Market – Significant Growth

- 10GBase-T market doubled in 2014 (from 2013)
- Expected to grow to >40M by 2019
- 1/3 of all ports will be shipped for the enterprise by 2019

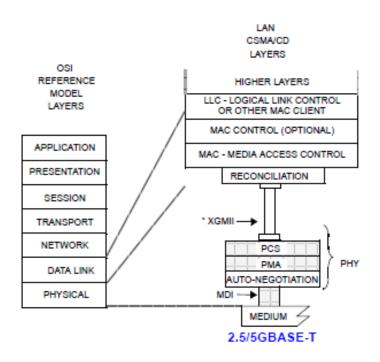
Source: Dell'Oro Feb'15

10GBASE-T Standard



- Hockey stick growth in Enterprise & Data Center environments
- 10GBASE-T operates successfully in Enterprise & Data Center environments
- Use and knowledge of 10GBASE-T is widely disseminated:
 - 10GBASE-T standard was approved in June 2006.
 - Three generations in the field: 65nm, 40nm and 28nm.
 - Multi-vendor interoperability well established.
- Due to 10GBASE-T's success, an amendment to IEEE Std 802.3 (802.3bq) is under way for:
 - 25G
 - 40G
- Scaling the 10GBASE-T standard is a fast and sure path to a 2.5/5GBASE-T standard.

10GBASE-T Modulation and Coding



- DSQ-128 and (2048,1723) LDPC
 - 10GBASE-T is a performance optimized transmission standard less than 2.5dB from Shannon capacity

Potential 2.5/5GBASE-T Layering

MDI - MEDIUM DEPENDENT INTERFACE

XGMII - X GIGABIT MEDIA INDEPENDENT INTERFACE

PCS - PHYSICAL CODING SUBLAYER

PMA - PHYSICAL MEDIUM ATTACHMENT

PHY - PHYSICAL LAYER DEVICE

"XGMII is optional.

Figure xx-1--Type 2.5/5GBASE-T PHY relationship to the ISO Open Systems Interconnection (OSI) reference model and the IEEE 802.3 CSMA/CD LAN model

Frequency-scaled 10GBASE-T Full Duplex Baseband Transmission

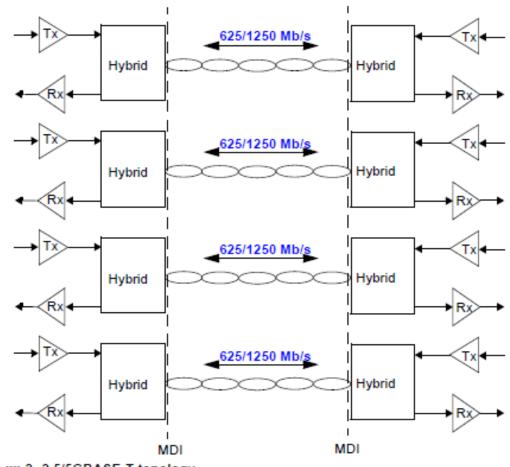
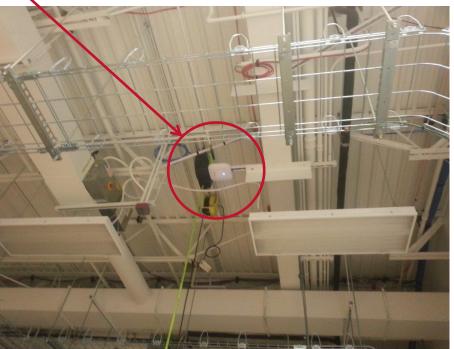


Figure xx-2--2.5/5GBASE-T topology

Potential 2.5/5GBASE-T Technical Approach

- Scale frequencies:
 - $-\frac{1}{2}$ for 5G
 - 1/4 for 2.5G
- Use industry-wide 10GBASE-T compatible start-up sequence.
- Preserve industry accepted implementation delay.
- Reuse TX specifications with 3dB (5G) and 6dB (2.5G) higher TX-PSD:
 - Additional protection against cross-talk
 - Maintains EMC characteristics

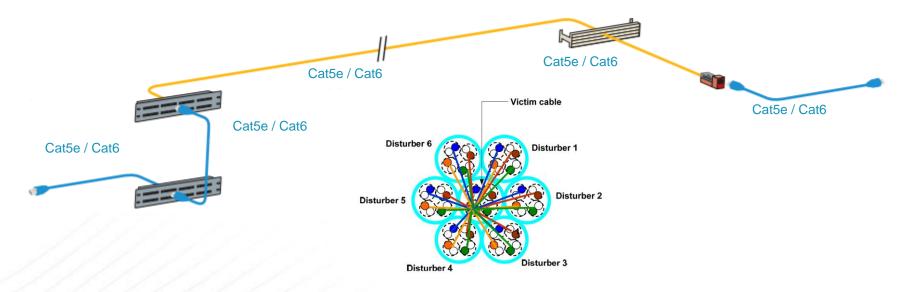
Potential 2.5/5GBASE-T Technical Approach (contact)


- DSQ-128 signaling on four twisted pairs.
 - 3.125bits per symbol needed for
 - 200MBd for 2.5G
 - 400MBd for 5G
 - 3.5bits per symbol
 - Guarantees sufficient SNR for the timing loop by avoiding false decisions
 - Efficient 12dB constellation partitioning
- Near Shannon capacity (2048/1723) LDPC code
- For 10GBASE-T, this approach was extensively analyzed in the 802.3 standards committee and found to provide the best performance

ALL BITS ARE PROTECTED:

- Some bits protected by LDPC code
- Some bits protected by Euclidean Distance
- Uncoded is NOT synonymous with unprotected

Potential 2.5/5GBASE-T deployment configurations



From C. DiMinico: NGEABT Use Case Ad Hoc

Error-free Test Results

Cat5e / Cat6 Channel

Rate	Cable type	Configuration	Aggressor rate	Aggressors length (m)	Victim length (m)
2.5G	Cat5e	6-a-1 (4 segments)	2.5G	100	≥100
5G	Cat5e	6-a-1 (4 segments)	1G	100	≥100
5G	Cat6	6-a-1 (4 segments)	5G	100	≥100

2.5/5GBASE-T Technical Feasibility Summary

- Leverage proven 10GBASE-T Technology
 - Robust DSQ-128 Modulation
 - High-performance LDPC coding
- Provide excellent performance
 - Error-free operation over 100m of Cat5e & Cat6 at 2.5Gb/s & 5Gb/s
 - Robust against alien noise sources (24/7 problem)
 - Robust against impulsive noise sources (infrequent)
- Straightforward implementation
 - Re-use of 10GBASE-T blocks accelerates multi-vendor implementation
 - Minimal hardware changes
- Support fast-track standardization
 - Leverage successful 10GBASE-T standardization
 - Enable direct path to IEEE standardization