Improved Transcoding Scheme for 40GBASE-T

Zhongfeng Wang Broadcom Corporation

IEEE P802.3bq, ad hoc group meeting, May 13th, 2015

• Peter Wu, Marvell Tech. Group

Introduction

Consider the newly adopted 512b/513b transcoding scheme [1], this presentation aims to

- Reduce the logic complexity of transcoding and trans-decoding
- Reduce power consumption of transcoding and trans-decoding
- Reduce processing latency of trans-decoding

Basic Idea:

- Fully maintain the original data mapping for each individual byte of data during transcoding.
- Reorder those transcoded data bytes to facilitate hardware reduction and processing latency reduction.

[1] http://www.ieee802.org/3/bq/public/jan15/langner_3bq_01a_0115.pdf

evervthina

Review: 512b/513b Transcoding

- If all of 8 66-b blocks are data blocks, set the header bit as "0" while keeping the rest of 64 bits as they are for each 66-b block.
- If at least one of 8 66-b blocks is a control block, set the header bit as "1" and move all the control blocks to the beginning while changing 1st byte of each control block as T10 format shown below.

Т	1	0/	T2	0/	T3	0::	
---	---	----	----	----	----	-----	--

3b: POS 4b: Ctrl

01	D10	Rest 7 bytes of Data blk-1	1	T10	Rest 7 bytes of Data blk-1
01	D20	Rest 7 bytes of Data blk-2		T20	Rest 7 bytes of Data blk-2
01	D30	Rest 7 bytes of Data blk-3		T30	Rest 7 bytes of Data blk-3
01	D40	Rest 7 bytes of Data blk-4		D10	Rest 7 bytes of Data blk-4
10	C10	Rest 7 bytes of Ctrl blk-1	$ \rightarrow$	D20	Rest 7 bytes of Ctrl blk-1
10	C20	Rest 7 bytes of Ctrl blk-2		D30	Rest 7 bytes of Ctrl blk-2
10	C30	Rest 7 bytes of Ctrl blk-3		D40	Rest 7 bytes of Ctrl blk-3
01	D50	Rest 7 bytes of Data blk-5		D50	Rest 7 bytes of Data blk-5

evervthin

Step-1: Reduce Complexity

- To reduce implementation complexity, we ONLY swap (if needed) first byte for each 64-b block [2]. The data format for T10/T20/T30 remains the same as with conventional transcoding (TC).
- With the new TC scheme, the MUXing logic is only associated with first 8 bits instead of 64 bits per 64-b block as in conventional design.

F

T10/T20/T30::

3b: POS 4b: Ctrl

01	D10	Rest 7 bytes of Data blk-1
01	D20	Rest 7 bytes of Data blk-2
01	D30	Rest 7 bytes of Data blk-3
01	D40	Rest 7 bytes of Data blk-4
10	C10	Rest 7 bytes of Ctrl blk-1
10	C20	Rest 7 bytes of Ctrl blk-2
10	C30	Rest 7 bytes of Ctrl blk-3
01	D50	Rest 7 bytes of Data blk-5

1	T10	Rest 7 bytes of Data blk-1				
	T20	Rest 7 bytes of Data blk-2				
	T30	Rest 7 bytes of Data blk-3				
	D10 Rest 7 bytes of Data blk-4					
$\overline{}$	D20	Rest 7 bytes of Ctrl blk-1				
$\overline{}$	D20 D30	Rest 7 bytes of Ctrl blk-1 Rest 7 bytes of Ctrl blk-2				
	D20 D30 D40	Rest 7 bytes of Ctrl blk-1 Rest 7 bytes of Ctrl blk-2 Rest 7 bytes of Ctrl blk-3				

g

[2] http://www.ieee802.org/3/bs/public/adhoc/logic/dec02_14/wangz_01_1214_logic.pdf

Step-2: Reduce Latency

- To reduce processing latency, we transmit the first bytes of every 64-b blocks before sending out the rest 7 bytes of any 64-b block [2].
- In this way, the trans-decoding operation doesn't need to wait until the whole transcoded block of data is received.

		T10/T20/T30:: F 3b: POS	4b: Ctrl									
				Γ	1 T1	0 T2) T30	D10	D20	D30	D40	D50
1	T10	Rest 7 bytes of data blk-1					Res	t 7 byte	s of da	ita blk-1	1	
	T20	Rest 7 bytes of data blk-2					Res	t 7 byte	s of da	ita blk-2	2	
	T30	Rest 7 bytes of data blk-3					Res	t 7 byte	s of da	ita blk-3	3	
	D10	Rest 7 bytes of data blk-4					Res	t 7 byte	s of da	ta blk-4	4	
	D20	Rest 7 bytes of ctrl blk-1					R	est 7 b	ytes of	ctrl blk	-1	
	D30	Rest 7 bytes of ctrl blk-2					R	est 7 b	ytes of	ctrl blk	-2	
	D40	Rest 7 bytes of ctrl blk-3					R	est 7 b	ytes of	ctrl blk	-3	
	D50	Rest 7 bytes of data blk-5					Res	t 7 byte	s of da	ita blk-	5	

[2] http://www.ieee802.org/3/bs/public/adhoc/logic/dec02_14/wangz_01_1214_logic.pdf

g

Prior Work: 802.3bj TC [3] (100G-KR4/CR4/KP4)

Same goal to reduce processing latency

- However, due to irregular arrangement of first bytes, the rest 7 bytes of top three 64-b blocks do not have fixed mapping locations in transcoding. Thus the MUXing logic is still needed for most of those data.
- On the other hand, this method can't be simply extended to 512b/513b case since we need 8 bits to label 8 64-b blocks while we can only squeezing 4 bits from one control block.

0	1011	D0								
			4b			Co	ntrol I	olk		
		D)	D1	D2	D3	D4	D5	D6	D7
		D)	D1	D2	D3	D4	D5	D6	D7

0 1110	D0							
	D0							
	D0	D1	D2	D3	D4	D5	D6	D7
	4b	Control blk						

[3] http://www.ieee802.org/3/100GNGOPTX/public/mar12/interim/cideciyan_01_0312_NG100GOPTX.pdf

BROAD

Transcoding of Data Blocks

- When dealing with 8 66-b pure data blocks, to ease the implementation, we should first transmit the first byte of each 64-b block as we did for those cases with one or more control blocks.
- In this way, there are fixed mapping locations for each 64-bit block except the first byte.

Analyses

- Since the muxing logic is reduced by approximately 8 times in the proposed transcoding scheme, a big (ratio) reduction on power and complexity is feasible.
- For 40G data rate, a parallel level of 64 (i.e., 64bits/cyc) may be assumed considering 625Mhz (1.6ns/cyc) is proper for digital clock. In this case, the trans-decoding latency is reduced approximately from 12.8ns to 1.6ns (FEC overhead will slightly affect final clock speed).
- In brief, the presented transcoding scheme leads to lower HW complexity/power consumption and reduced processing latency without sacrificing any performance.

everything

Proposed Changes to the Spec

• Replace the Table 113-2 on page 99 with the following table.

C ₀ {1, Position <2:0>, Block Type <3:0>}	tx_coded_0<9:64>
<i>C</i> ₁ {1, Position <2:0>, Block Type <3:0>}	tx_coded_1<9:64>
<i>C</i> _{<i>k</i>-1} {0, Position <2:0>, Block Type <3:0>}	tx_coded_k-1<9:64>
$tx_coded_U_0 < 1:8 >$	tx_coded_k<9:64>
$tx_coded_U_1 < 1:8 >$	tx_coded_k+1<9:64>
$tx_coded_U_{7-k} < 1:8 >$	tx_coded_7<9:64>

• Add following texts:

"The data in the left column of the table are **ALWAYS** transmitted first, row by row starting from top. Then those in the right column of the table are transmitted row-by-row starting from top."

