PHY Power Components and variations

G. Zimmerman CME Consulting, Inc. 12/5/13

IEEE 802.3bq 40GBASE-T Task Force – Dec 5 2013, PHY Proposal Ad Hoc

Outline

- PHY Power Components
- Channel Variations under Consideration
- Fixed Power Components

 Elimination of Crosstalk Cancellers
- Analog Receiver Power vs. Bandwidth
- First-Order Overall Power
- Architecture Dependence need to study

PHY Power Components

- Largely fixed with respect to channel parameters
 - TX Power
 - Equalizer
 - Echo Canceller
 - FEC coder/decoder
 - PCS framing
 - Interfaces & adaptation overhead
- Possibly variable
 - Analog front-end receiver power
 - NEXT cancellation
 - FEXT cancellation
- Savings in the above may result in tighter margins on the "fixed" components, increasing their power

Channel Variations Under Consideration

- Class 1 and Class 2 channels
 - Same: IL, ILD, Background noise (alien xtalk minimal)
 - Minor differences in RL, Connector RL
 - Substantial difference (10dB or more): NEXT, FEXT
- PCB 2 stackups, 2 lengths
 - 8 in PCB IL significant at 1.5GHz and above
 - 2 in PCB IL not a substantial impairment (use 8 in as limiting)
- MDI
 - Connectors
 - Same: IL, RL for both channels
 - Isolation
 - Magnetic loss, attributed to hand-wound variation
 - Tends to dominate over connector attributes
 - Possible packaging differences in connector/isolation for ICMs

Fixed PHY Power Components

- FEC, PCS, Adaptation & Overhead
 - Primarily changes required SNR, robustness of solution
- Analog Transmit Power
 - Driven mainly by channel IL, non-40GBASE-T noise at the receiver and (weakly) by bandwidth
 - All parameters are equivalent for both cable classes
 - For PHY used bandwidths <= 1.7 GHz, MDI choices have little effect (losses look like <2dB, similar to other PHYs)
 - PCB and Isolation choices will impact this
- Equalizer
 - Driven by channel IL & ILD (equivalent in both classes)
- Echo Canceller
 - Driven by line-side MDI Return Loss + Insertion Loss, channel Return Loss, Robustness to bending, and channel deformation
 - Equivalent for most choices

Power in Crosstalk Cancellers

- Analog power = 50% PHY power, typically
- DSP: 40% (overhead/leakage is 10%)
 - Maximizing NEXT/FEXT estimate below
 - Equalizer remains (~10% DSP power)
 - Echo canceller multipliers remain (~30% DSP power)
 - Including transform engines
 - FEC remains (20% DSP power)
 - NEXT/FEXT canceller power (<40% DSP power)
- RESULT: NEXT/FEXT cancellers ~16% PHY power, and often integrated with other functions

Elimination of Crosstalk Cancellers

- Complete elimination of crosstalk
 cancellers is unlikely and problematic
- Analysis has shown case for elimination is marginal
- Cancellers make BASE-T robust
 - Enable reduced cost / complexity PCB design
 - Enable lower-cost MDI crosstalk
 - Protect against defects in cabling installation, patch connections

Analog Receiver Power vs. Bandwidth (8 in PCB, from grimwood_3bq_01_1113, slide 7)

- Minima at 3450 Mbaud PAM
 - 1725 MHz used
- Increases below 1600 MHz
 - ~20% by 1500 MHz
 - ~50% by 1350 MHz
 - ~100% by 1250 MHz
- Slightly less sensitive w/2in PCB
 - Digital power will favor lower bandwidths

First-Order Overall Power

Components

- Analog Front End Power
 - 1.3-1.5x 10GBASE-T
 - Assume 50% component of 10GBASE-T PHY power
- DSP power:
 - Proportional to clock speed for same signal processing
 - Nominal 4X 10GBASE-T clock
 - Reduced complexity due to channel relaxation or less than 4X rate (0 to 25%?)
 - Assume 40% component of 10GBASE-T PHY power
- Overhead/Interface power
 - 10% component of 10GBASE-T
 - Assume 40G similar to 10GBASE-T

Based on 2Watts for 10GBASE-T PHY

- AFE:
 - 1W goes to 1.3W to 1.5W
 - Bandwidth dependence is reverse correlation to DSP power
- DSP:
 - 0.8W goes to 2.4W to 3.2W
 - Note 2.4W likely only goes with 1.5W analog
- Overhead/interface:
 - 0.2W remains 0.2W
- BALLPARK: 4.1W to 4.9W

CONCLUSION: We're in the range, but need to be careful!

IEEE 802.3bq 40GBASE-T Task Force, Dec 5 2013, PHY Proposal Ad Hoc

Digital Architecture Dependence – Need to Study

- Digital power is vendor/architecture dependent
 - Will need PHY vendors to produce their own best estimates
- 2-connector topology and reduced channel IL requirement means optimal power architectures may be different from 10GBASE-T
- Receiver EQ/Cancellation is an area for vendor differentiation & innovation
 - Description is not needed for standardization
 - Confidence in hitting power requirements is needed

Conclusions

- Used bandwidth is viable between 1.4GHz and 1.7 GHz to control analog power
- Most digital power fixed or baud rate dependent
 Favors lower analog bandwidths
- Vendor-specific receiver architecture tradeoffs are likely more important than standards definition of modulation & coding
- We're close, but need to be careful!