IEEE 802.3br D1.0
Proposal to addressi the editor’s note in clause 9.4.5

Current editor’s note
_

» This presentation provides alternatives to address the editor's comment in
clause 99.4.5 (page 37, line 30 in D1.0).

« Text from the draft:
 Editor’'s Note (to be removed prior to publication) - If the final mFrame of a
preempted frame is lost, i.e receive processing is waiting for another
fragment in a preempted frame and the start of the next preemptable frame
arrives, the receive processing state diagram operation will discard the new

frame as well as the incomplete frame.]

IXia

Alternative 1: Add an “exception” to following figure 99-5

Change
“Receive processing shall be performed as specified in Figure 99-5"
To

“Receive processing shall be performed as specified in Figure 99-5 except as noted in
clause 99.4.5.x.”

Add new clause 99.4.5.x:
99.4.5.x Special handling of lost final mFrames

Per figure 99-5, if one or more non-final mFrame of a preempted frame have been
received, the receiver will be in the WAIT FOR RESUME state (waiting to receive the next
mFrame from the same preempted frame). If the final mFrame in the preempted frame is
lost or has a corrupt SMD, the state machine will still be in the WAIT FOR RESUME state
when the first mFrame of the next preemptable frame is received and the state machine
will transition to the ASSEMBLY ERROR state, causing the pMAC to interpret both the
current preempted frame and the next preemptable frame as invalid frames and both
frames will be dropped by the pMAC.

Receive processing shall ensure that the pMAC will detect an error in the preempted frame
where there is a missing final mFrame, Receive processing may either cause the pMAC to
detect an error in the second frame (as per figure 99-5) or pass the second frame to the
PMAC as a valid frame.

IXia

Alternative 2: Split receive processing into two state machines with a fifo

Add to clause 99.4.5 (Receive processing)
The receive processing consists of a receive processing input block, a fifo, and the receive
processing output block.

The receive processing input block is responsible for parsing and validating incoming
mFrames and reassembling such mFrames into Frames.

The fifo provides buffering such that the input block can process a new mFrame while the
output block is still forwarding data from the previous mFrame to the pMAC. The fifo
should provide enough buffering such that the input block can receive new data while the
output block is forwarding a Frame Check Sequence, an IPG, and a preamble to the
PMAC.

The receive processing output block is responsible for passing data to the pMAC, ensuring
that the pMAC will detect a FrameCheckError due to any reassembly errors, and ensuring
that a there is a valid IPG in all frames sent to the pMAC

IXia

Alternative 2: Split receive processing into two state machines with a fifo (cont).

Add to clause 99.4.7.3 (Variables)
receiveFifo
A fifo array used to store data from new incoming mFrames while data from the previous
mFrame is being forwarded to the pMAC. Each element of the fifo can hold either the value
from an octet, the special value “EOF” (indicating that the frame has ended), or the special
value DISCARD_EOF (indicating that frame should be discarded).

Add to clause 99.4.7.4 (Functions)
FIFO_DEQUEUE
Returns an Invokes an implementation dependent process that dequeues an element from the
fifo and returns the dequeued data element data

FIFO_EMPTY
Returns a boolean value indicating if the receiveFifo is not storing any elements. true indicates
that the receiveFifo is empty. false indicates that the receiveFifo has data that can be
dequeued.

FIFO_ENQUEUE(data)
Invokes an implementation dependent process that enqueues data to the receiveFifo.

FIFO_HEAD_DATA
Returns the data at the head of the receiveFifo without dequeuing the data from the fifo.

IXia

Alternative 2: Split receive processing into two state machines with a fifo (cont).

begin

Replace Figure 99-5 with the following: J’

INIT RX PROC

mRXDV=FALSE ¢
v
IDLE RX PROC

ResumeRx <= FALSE
mdtRxFrag <=0

1 mRxDV=TRUE ¢

preamble CHECK FOR START

SMD_DECODE(mRX_DATA)

— lesamen l

s BAD FRAG EXPRESS
mRxDv=FALSE
v ¢ \ 4 | | <
P RECEIVE DATA mRxDv=FALSE <
FIFO_ENQUEUE{mRX_DATA)
mRxDv=TRUE #* I mRxDv=FALSE
RX_MCRC_CK=FALSE *
RX_MCRC _CK=FALSE * FRAME COMPLETE
WAIT FOR DV FALSE FIFO_ENQUEUE(EOF) - -
| mRxDv=FALS

Alternative 2: Split receive processing into two state machines with a fifo (cont).

Replace Figure 99-5 with the following (continued):

RX_MC RC_CK=FALSEl $ FRAME COMPLETE
WAIT FOR DV FALSE FIFO_ENQUEUE(EOF)
mRxDv=FALSE

P
¢ mRxDV=FALSE

WAIT FOR RESUME

lmeDV=TRUE
v

CHECK FOR RESUME
preamble | SMD_DECD DE{mRX_DATA) E+ OTHER
| c
v S
UNBEXPECTED SMD CHECK FOR FRAG COUNT
FIFO_ENQUEUE(DISCARD EOF) FRAG_DECODE(mRX_DATA)
<—/ mFragCnanRmegl lerragCntI= nxiRxFrag
ucTt
INCREMENT FRAG COUNT ASSEMBLY ERROR
ndragCount=++ HFO_ENQUEUE(DISCARD EOF)

ucTt

| , mRxDv=FALSE

IXia

Alternative 2: Split receive processing into two state machines with a fifo (cont).

Add new Figure 99-x after Figure 99-5: b.fn
v

IDLERX OUT

preamb le OctetsSent=0

FIFO_EMPTY=FALSE *
Ipg_timer_done = TRUE

P PREAMBLE

pRX_DV(TRUE)
pRX_DATA(preamble)
: preamble OctetsSent++

preambleOctetsSent < 7

preamble OctetsSent >= 7

P SFD
pRX_DATA(SFD)

* iUCT

P DATA

FIFO_HEAD_DATA /=EOF *

FIFO_HEAD_DATA /= DISCARD_EOF pRR DATAFIFG DEQUELE)

¢ FIFO_HEAD_DATA = DISCARD_EOF

P
HFO_HEAD DATA = EOF
DISCARD

ucT v v
P EOF

pRX_DV(FALSE) i X i a
]

