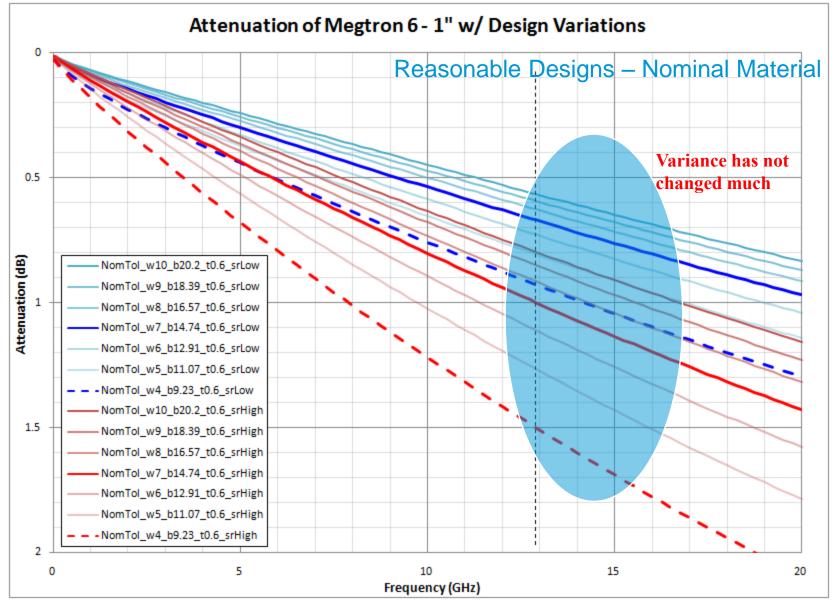


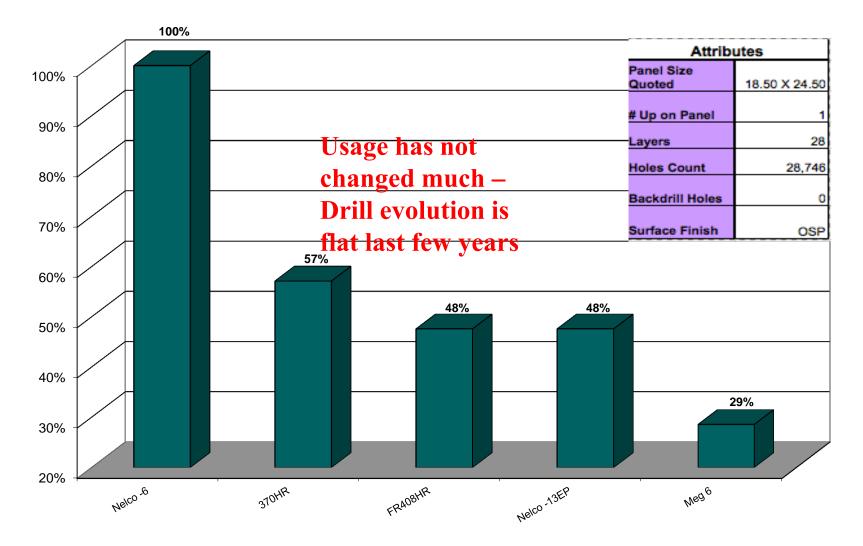
# 400GE Electrical Interface Thoughts

Joel Goergen – Distinguished Engineer / Cisco Systems

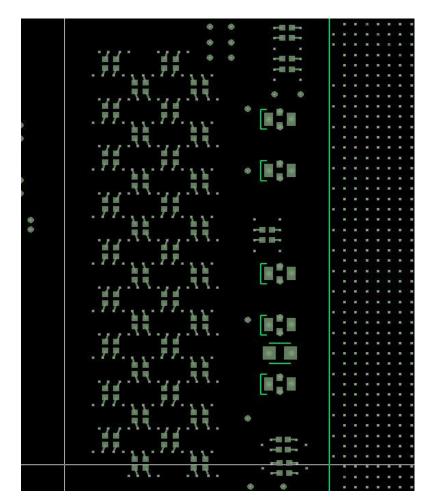

05May2014 ver 02

Abstract: Describe the four basic electrical interconnect building blocks and potential guidelines for each (C2M, C2C, C2F, and C2ISP).

#### **Overview**


- Channel Manufacturing Basics
- Defining Serial Interconnects
- Interconnect Power Efficiency
- Interconnect Basic Requirements

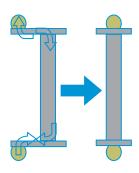
#### Technology Contribution: Trace Widths / Loss Variation

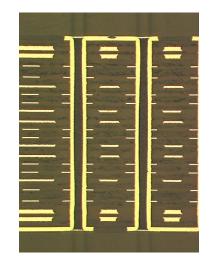



#### **Technology Contribution: Drill Usage**

Drill Bit Life Expectancy Relative Drilled Holes on a Drill Bit

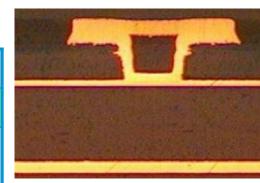



#### **DC Blocking Capacitor Field**




- Consumes a large area
- Requires considerable grounding to reduce common mode noise, control cross talk, and limit radiated emissions.
- A lot of solutions in ASICs to replace the blocking cap – but come with system trade-offs and vendor interoperability implementations.

#### Technology Contribution: VIA in PAD Plated Over

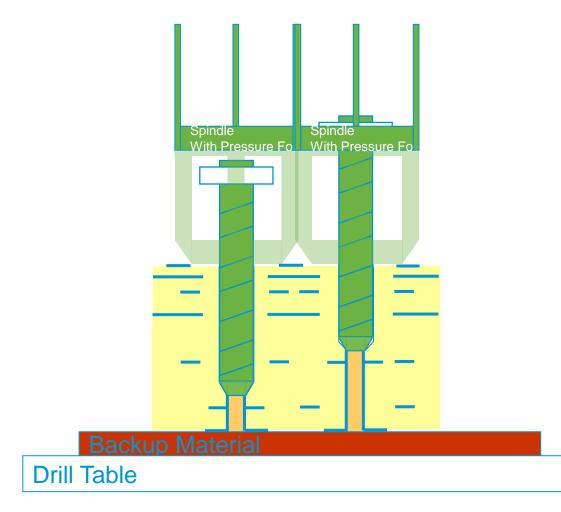

| Item                  | Comment                                                                               |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------|--|--|--|
| Signal Integrity      | Eliminate dogbones                                                                    |  |  |  |
| Routability           | Very little – freed up outer layer area, but requires outer layer features and spaces |  |  |  |
| Reliability (SnPb)    | Proven                                                                                |  |  |  |
| Reliability (Pb-free) | No issues found yet                                                                   |  |  |  |
| Supply Base           | Large                                                                                 |  |  |  |
| Process Complexity    | Moderate – additional plating, epoxy fill and planarization                           |  |  |  |
| Cost                  | ~20% adder                                                                            |  |  |  |
|                       | dependant on tech level, layer count, etc                                             |  |  |  |
| Hidden Cons           | Restricted OL feature size                                                            |  |  |  |
|                       | Restricted OL spacing                                                                 |  |  |  |





#### Technology Contribution: Blind VIA / Micro VIA

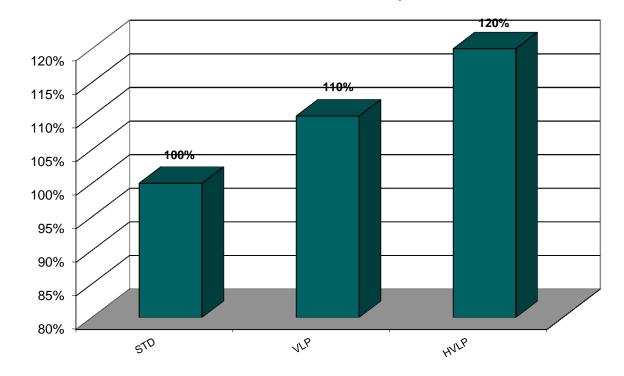
| Item                  | Comment                                                                                   |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------|--|--|--|
| Signal Integrity      | Small, stubless via                                                                       |  |  |  |
| Routability           | Freed up space on layer below via                                                         |  |  |  |
| Reliability (SnPb)    | Proven                                                                                    |  |  |  |
| Reliability (Pb-free) | Proven                                                                                    |  |  |  |
| Supply Base           | Large                                                                                     |  |  |  |
| Process<br>Complexity | Minimal – laser drilling and microvia platingpretty common technology for most suppliers. |  |  |  |
| Cost                  | ~5-15% (Conformal plated)<br>~15-40% (Cu fill plated)                                     |  |  |  |
| Hidden Cons           | Some design tools not 100% optimized                                                      |  |  |  |




#### Technology Contribution: Skip VIA

| Item                  | Comment                                                           |  |  |  |
|-----------------------|-------------------------------------------------------------------|--|--|--|
| Signal Integrity      | Stubless via connection for high speed signals                    |  |  |  |
| Routability           | Freed up space on layer below via (1to3 and 1to4)                 |  |  |  |
| Reliability (SnPb)    | Passed                                                            |  |  |  |
| Reliability (Pb-free) | Passed                                                            |  |  |  |
| Supply Base           | Limited (6mil dia std, 4mil is advanced)                          |  |  |  |
| Process Complexity    | Moderate – complex laser drilling process. Still has limitations. |  |  |  |
| Cost                  | ~15-20% (Conformal plated)<br>~30-40% (SKIPPO)                    |  |  |  |
|                       | Adds processing days                                              |  |  |  |
| Hidden Cons           | Prone to laminate cracking below via                              |  |  |  |

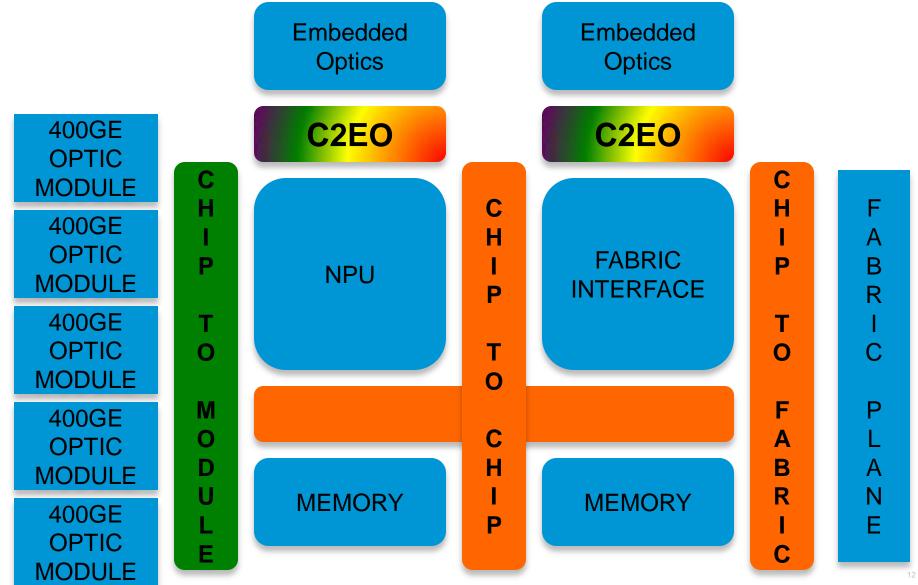



#### Technology Contribution: Back Drilling



- Back Drilling is a well defined process with < 4% cost impact on fr4 and < 8% on MEG6.</li>
- Stop depth tolerance can be as low as +/- 5 mils but often is in the range of +/-10 mils.
- Removes a significant portion of the stub.
- Don't be afraid to deploy this fabrication technology. Seldom used in 2000, this technique is used today in almost all high speed designs.
   Depth control is difficult
  - on large, thick panels.

#### Technology Contribution: Copper Surface Roughness


- Much work has been done here.
- Impact at 10Gbps is not worth the added costs.
- Impact at 25Gbps shows improvement.
- Impact at higher speeds is very relevant Relative Cost Analysis



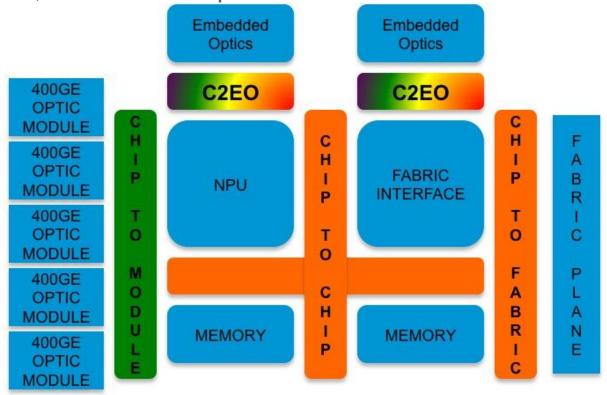
### **Take Away Points**

- Remove the stubs
- Line widths are getting smaller / Pitch is getting smaller
- Cu thickness is getting thinner to accommodate the fine geometries
- Make use of skip vias and micro vias
- Surface roughness, Cu thickness, and via to trace bonding will play key roles in next generation channel models.

# 4 Basic Types: C2M / C2C / C2F / C2EO

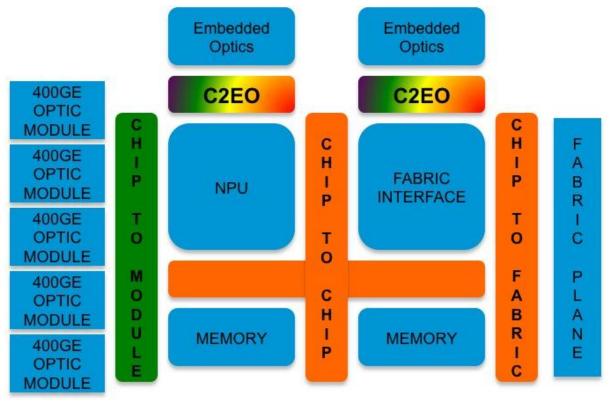


### **Take Away Points**


- C2M: Chip2Module Well defined interface. Tremendous effort in mechanical / SI analysis for the interconnect and packaging design. Usually about 5cm to 7cm – varies by design.
- C2C: Chip2Chip Often custom protocols, but use the IEEE definitions. Can run up to 50cm in length. Usually about 5cm to 30cm – varies by design.
- C2F: Chip2Fabric The fabric interconnect replaced what was once called the back plane or mid plane. This interconnect can be very long and consume a lot of power/bit. Probably outside the objectives here.
- C2EO: Chip2EmbeddedOptics Emerging interface. Can easily replace all of the other interfaces in the system.

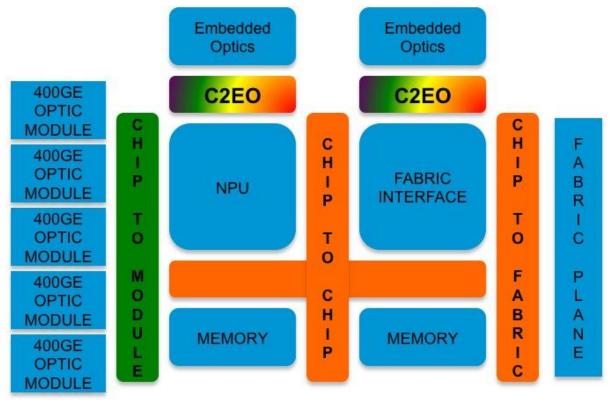
#### Exploring the Possibilities for Electrical Interfaces: Optimizing Lane Width to Module Rate

| #Lanes<br>/<br>Port Rate      | 40x10G  | 32x12.5G | 25x16G                                            | 20x20G             | 16x25G             | 10x40G             | 8x50G   | 4x100G  | 2x200G  |
|-------------------------------|---------|----------|---------------------------------------------------|--------------------|--------------------|--------------------|---------|---------|---------|
| 10GE                          | 40ports | 32ports  | 25ports                                           | 40ports<br>20ports | 32ports<br>16ports | 40ports<br>10ports | Х       | Х       | Х       |
| 25GE<br>Not IEEE<br>MAC Rate  | Х       | 16ports  | Х                                                 | Х                  | 16ports            | Х                  | 16ports | 16ports | Х       |
| 40GE                          | 10ports | Х        | х                                                 | 10ports            | 8ports             | 10ports            | 8ports  | 8ports  | 10ports |
| 50GE<br>Not IEEE<br>MAC Rate  | 8ports  | 8ports   | Х                                                 | Х                  | 8ports             | Х                  | 8ports  | 8ports  | 8ports  |
| 100GE                         | 4ports  | 4ports   | Х                                                 | 4ports             | 4ports             | Х                  | 4ports  | 4ports  | 4ports  |
| 200GE<br>Not IEEE<br>MAC Rate | Х       | 2ports   | Х                                                 | 2ports             | 2ports             | 2ports             | 2ports  | 2ports  | 2ports  |
| 400GE                         | Х       | ×        | X                                                 | 1port              | 1port              | 1port              | 1port   | 1port   | 1port   |
|                               |         |          | Keeping the table simple<br>FEC is NOT shown here |                    |                    |                    |         |         | 14      |


#### Interface 16x25G / 20x20G Best: C2M / Not so Best: C2C and C2F

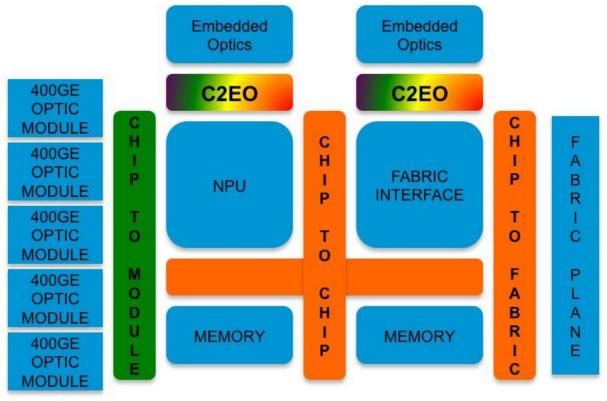
- Lot of lanes to route / Lot of board layers / lot of pins.
- Covers every interface type.
- Available today / lots of solutions and layout guidelines.
- Good use for C2M Interface, but still lots of pins and SI issues.
- For Embedded Optics C2EO, the short reach interface could be wide. The key is to drive as low pj/b as possible.




#### Interface 8x50G Best: C2M / Good: C2C and C2F

- Good trade-off for routing, layers, and pin count.
- Not optimal for a range of port types.
- Available tomorrow/ lots of solutions in process. Could be a fast follower to 16x25G.
- Works good for C2M / C2C / C2F. There are SI issues.
- For Embedded Optics C2EO, the short reach interface could be wide. The key is to drive as low pj/b as possible.

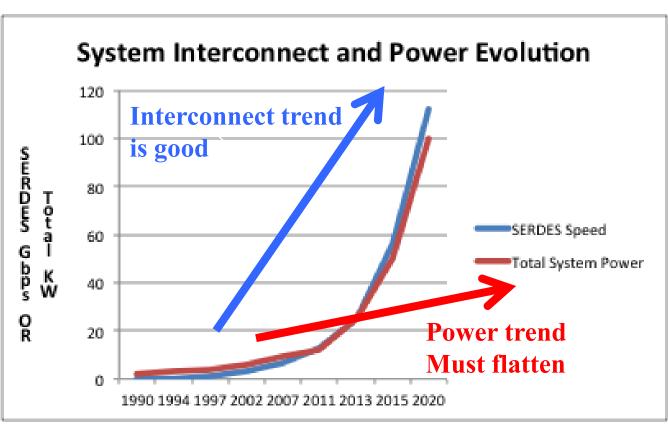



#### Interface 4x100G Best: C2M / C2C / C2F / C2EO

- Good use of routing, layers, and pin resources.
- OK for a range of port types.
- Available tomorrow / lots of solutions in process (kidding but close). This could be a reasonable follower to 16by25G.
- Works good for C2M / C2C / C2F / C2EO.
- For Embedded Optics C2EO, this narrow short reach interface could work well if pj/b is low.
- Cost optimized by utilizing on chip die area to address channel impairments, as opposed to an embedded circuit that would be used in an optical module.

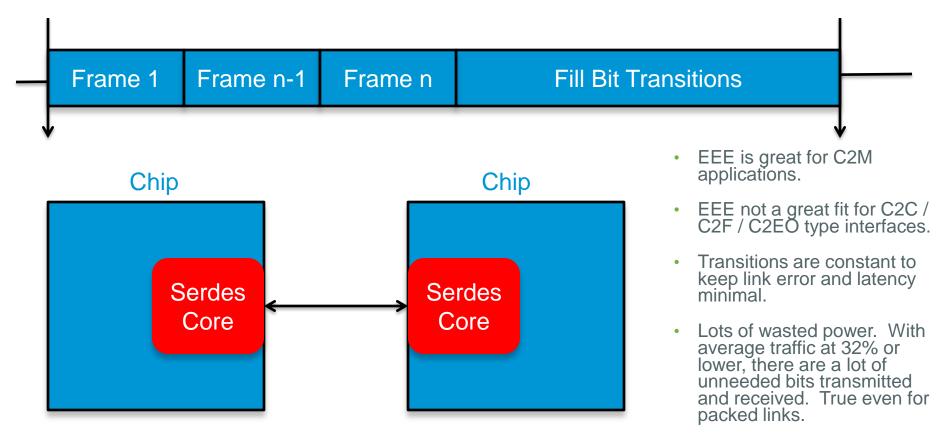


#### Interface 2x200G Best: C2M / C2C / C2F


- Great use of routing, layers, and pin resources.
- Good for a range of port types and scales to 1Tbps.
- Available tomorrow / lots of solutions in process (kidding, but has potential).
- Works good for C2M / C2C / C2F / C2EO.
- For Embedded Optics C2EO, this narrow short reach interface could work well if pj/b is low.
- Cost optimized by utilizing on chip die area to address channel impairments, as opposed to an embedded circuit that would be used in an optical module.

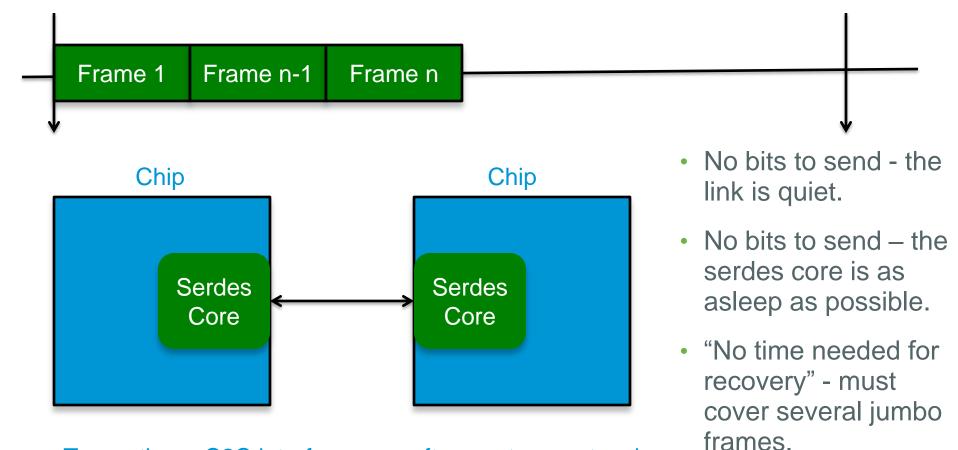


### **Take Away Points**


- All four interface types need to be discussed.
- Width vs BW has to be addressed for each type.
- C2M / C2C / C2EO are key interfaces for next generation systems. C2F is most likely outside scope.
- Given all the uses for an interface, one width can't address everything.
- 16x25G seems a good fit for early adoption based on past 20G and 25G adoptions.
- 8x50G might be a fast follower, but might be just an intermediate step.
- 4x100G could be a long term follower and may be preferred over 8x50G.

#### Interconnects and Power are Tightly Coupled

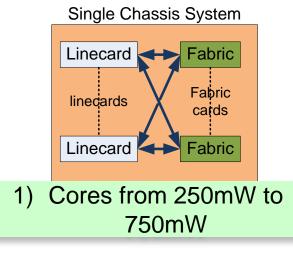


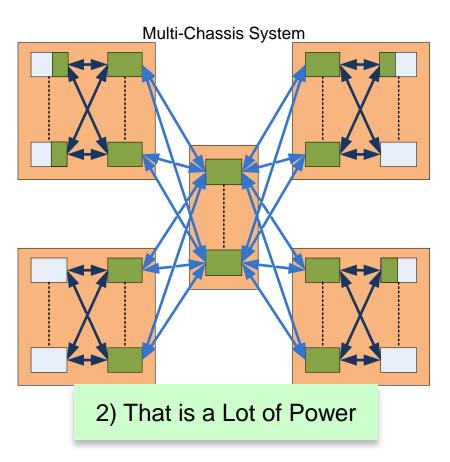

- From 20Mbps interconnects in a 2KW chassis to 25Gbps interconnects in a 25KW chassis today.
- SERDES trend is good, while the total power trend is not so good – needs to be more green friendly.
- Suggests the total interconnect capacity in Gbps/W is in a positive direction
- Implies the density story for interconnects is getting interesting at the front end and the back end.

#### Wishing for a Power Efficient Interface C2C / C2F / C2EO What There Is Today

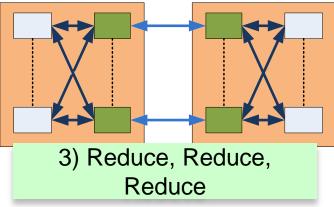


#### True – these C2C interfaces are often custom protocols


#### Defining a Power Efficient Interface C2C / C2F / C2EO Just Say Green




True – these C2C interfaces are often custom protocols


22

## Interconnects Range in the 1000s Chassis Size 10RU to 44RU Adds Up to A lot fo Power





Back-to-back System



### **Take Away Points**

- C2C / C2F / C2EO do not need to be active all the time when average DC traffic, non peak, is 16% to 30%, and average SP traffic, non peak, is 32%. More then 2/3<sup>rd</sup> the time, the internal system links could be shut off. Up to 2KW savings in a 20KW chassis.
- Define a zero latency and zero recovery time interconnect
- Crucial to reducing power
- Crucial to achieving:

20% power at zero traffic

100% power at 100% traffic

#### Interface Types Basic Requirements

|                                                    | BW in GHz            | Channel<br>Loss | Coding | FEC | Potential<br>Distance                                                |
|----------------------------------------------------|----------------------|-----------------|--------|-----|----------------------------------------------------------------------|
| C2M<br>28G VSR<br>56G VSR<br>CAUI-4                | ??14GHz<br>(today)   | 10dB            | ??     | ??  | <pre>&lt;15cm Will this be enough given a module 4 wide QSFP??</pre> |
| <b>C2C</b><br>28G SR<br>56G MR<br>CAUI-4           | ??14GHz<br>(today)   | 20dB            | ??     | ??  | <30cm                                                                |
| C2EO                                               | 25GHz to<br>50GHz    | 5dB             | ??     | ??  | <1cm                                                                 |
| C2F<br>25G LR<br>.3bj<br>(likely outside<br>scope) | ??12.5GHz<br>(today) | 35dB            | ??     | ??  | <75cm                                                                |

### **Take Away Points**

- Have to use best channel design practices.
- 16x25G seems a good fit for early adoption based on past 20G and 25G adoptions.
- 4x100G could be a long term follower and may be preferred over 8x50G.
- Any interface should address more then C2M. Must include C2C and C2EO.
- Open questions on point to point loss/distance and on channel bandwidth for a given coding/signaling.
- Interface types must address maximum energy efficiency.
- Stay tuned for updates ....