

Loss Budgeting for 400GE Channels

Paul Kolesar CommScope May 2014 IEEE P802.3bs "400GE Task Force"

Purpose and Approach

- Lay groundwork (concepts, terminology)
- Define a loss budget that
 - is appropriate for each of the four "reach" objectives of the project
 - At least 100 m over MMF
 - At least 500 m over SMF
 - At least 2 km over SMF
 - At least 10 km over SMF
 - addresses differences between 2-fiber and parallel optics connectivity
 - supports double-link channels within a building
 - supports triple-link channels running between buildings
 - supports the higher attenuation of SM cable constructions used inside buildings
- Use statistical approach
 - Following the lead from previous contributions to P802.3ba, 3bm

Attributions

- References to prior related contributions
 - anslow_03_1107.xls / Fibre_characteristics_V_3_0.xls
 - king_01_0508
 "Connector loss budgeting methodology for parallel multimode PMDs"
 - kolesar_02_0911
 "Fiber Cabling Trends in Data Centers"
 - kolesar_02_0313

"Loss Budgeting for Single-mode Channels"

Cabling Terminology

Cords – used to administer connectivity from:

- 1. equipment (transceivers) to patch panel, called equipment cords
- 2. patch panel to patch panel, called patch cords

Links – permanent cabling between two patch panels

<u>Channels</u> – complete end-to-end connectivity between equipment consisting of concatenations of cords and permanent link(s)

Triple-link Channels – Really?!

- Previous contributions modeled single-link and double-link
 Suitable for topologies within a building (≤ 500 m)
- \geq 2 km reach aims to span between buildings
 - Introduces additional campus link
- Supporting triple-link channels permits
 - One link in each building plus campus link

Double-link cabling channel examples

Common channel implementations

* Connections to transceivers (at MDI) are not counted in standard loss budget

Channel Connectivity Characteristics

• Typical channel connection & splice count summary

Channel	Transmission	# LCs	# MPOs	# Splices*
Single-link	2-fiber	2	2	0
	Parallel fiber	0	2	0
Double-link	2-fiber	4	4	0
	Parallel fiber	0	4	0
Triple-link	2-fiber	6	4	0
	Parallel fiber	0	6	2

* Other splices along outside plant (OSP) cabling subsequently included in cable attenuation model via anslow_03_1107.xls / Fibre_characteristics_V_3_0.xls

SM Connection & Splice Insertion Loss

- Following approach in kolesar_02_0313 & king_01_0508
 - Calculate using normal statistics at +2.5 standard deviations
- Good starting place for single-mode LCs

- Mean = 0.20 dB; Std. Dev. = 0.15 dB

- Good starting place for single-mode MPOs
 - Mean = 0.35 dB; Std. Dev. = 0.25 dB
- Good starting place for single-mode fusion splices
 - Mean = 0.07 dB; Std. Dev. = 0.05 dB

Using these values at +2.5 standard deviations we get:

Channel	Transmission	# LCs	# MPOs	# splices	IL (dB)
Single-link	2-fiber	2	2	0	2.13
	Parallel fiber	0	2	0	1.58
Double-link	2-fiber	4	4	0	3.66
	Parallel fiber	0	4	0	2.65
Triple-link	2-fiber	6	4	0	4.15
	Parallel fiber	0	6	2	3.78

Cable Attenuation in Structured Cabling Standards

- TIA 568 and ISO 11801 (and their related data center cabling counterparts) are predominantly used for premises and data center cabling specifications
 - Both specify single-mode cable attenuation that is dependent on construction
- TIA:
 - outside plant (OSP): 0.5 dB/km max @ 1310 nm, 1550 nm
 - indoor/outdoor: 0.5 dB/km max @ 1310 nm, 1550 nm
 - indoor: 1.0 dB/km max @ 1310 nm, 1550 nm
- ISO:
 - OS1 (original spec that included inside plant): 1.0 dB/km max @ 1310 nm, 1550 nm
 - OS2 (added to support 10 km OSP applications): 0.4 dB/km max @ 1310 nm, 1383 nm, 1550 nm
- Advisable to use <u>at least</u> 0.5 dB/km for cabling that will serve indoor deployments
- Must separately account for splice losses along long lengths of OSP cabling

Cable Attenuation Budgets

- Indoor / Outdoor cabling length mixtures for reach objectives and attenuations
 - MM attenuation per IEEE 802.3 Link Model at 850 nm
 - SM attenuation per anslow_03_1107.xls / Fibre_characteristics_V_3_0.xls at 1310 nm

Reach Objective ≥	Indoor Length	Outdoor Length	Indoor Atten.	Outdoor Atten.	Total Atten.
100 m MM	100 m	0 m	0.35 dB	0 dB	0.35 dB
500 m SM	500 m	0 m	≥ 0.25 dB	0 dB	≥ 0.25 dB
2,000 m SM	1,000 m	1,000 m	≥ 0.50 dB	0.42 dB	≥ 0.92 dB
10,000 m SM	1,000 m	9,000 m	≥ 0.50 dB	3.76 dB	≥ 4.26 dB

Total Loss Budgets

• Combining insertion losses and attenuations

Reach Objective ≥	Transmission & Channel	Insertion Losses	Attenuation	Total Loss Budget
100 m MM	2-fiber D-L	1.50 dB	0.35 dB	1.85 dB
	Parallel D-L	1.50 dB	0.35 dB	1.85 dB
500 m SM	2-fiber D-L	3.66 dB	≥ 0.25 dB	≥ 3.91 dB
	Parallel D-L	2.65 dB	≥ 0.25 dB	≥ 2.90 dB
2,000 m SM	2-fiber T-L	4.15 dB	≥ 0.92 dB	≥ 5.07 dB
	Parallel T-L	3.78 dB	≥ 0.92 dB	≥ 4.70 dB
10,000 m SM	2-fiber S-L	2.13 dB	≥ 4.26 dB	≥ 6.39 dB

Notes:

- 1. MM budgets follows traditional IEEE 802.3 allocations.
- 2. SM budgets combine models presented herein.
- 3. These are recommended minimum budgets. Greater budgets will enable more flexibility in channel design regarding topologies and cable type.

Total SM Loss Budgets at a Glance

Summary & Closing Perspectives

- 100G-LR4 provides 6.3 dB loss budget for 10 km reach
 - Supports single-link channels at maximum reach
 - Supports multi-link channels with reach reduction
- 2 km budget needs ~5 dB for loss
 - Moderately (~1.3 dB) smaller than for 10 km
 - Much budget (~4 dB) devoted to triple-link connectivity support
- 500 m budgets need ~3 dB for parallel or ~4 dB for 2-fiber
 - Substantially (~2.3 to 3.3 dB) smaller than for 10 km
 - Should enable cost reduction
- Trimming loss budgets further will lose utility
 - Our efforts will be in vein
- Do not follow precedent of allocating only 2 dB connection and splice loss
 - Worked in past because substantial power was also allocated to overcome attenuation of cabling, e.g. at least 4 dB for 10 km reach
 - This attenuation budget is traded for insertion loss budget within data centers
 - This luxury will not be afforded to these shorter-reach solutions

Q & A